
September 1995 1/124

This is advanced information from SGS-THOMSON. Details are subject to change without notice.

ST10 FAMILY

PROGRAMMING MANUAL

The SGS-THOMSON family of 16-bit microcontrollers offers devices that provide various levels of periph-
eral performance and programmability. This allows each specific application to be equiped with the mi-
crocontroller that fits best to the required functionality and performance.

The SGS-THOMSON family concept provides an easy path to upgrade existing applications or to climb
the next level of performance in order to realize a subsequent more sophisticated design. Two major
characteristics enable this upgrade path to save and reuse almost all of the engineering efforts that have
been made for previous designs:
- All family members are based on the same basic architecture
- All family members execute the same instructions (except for upgrades for new members)
The fact that all members execute the same instructions (almost) saves knowhow with respect to the un-
derstanding of the controller itself and also with respect to the used tools (assembler, disassembler, com-
piler, etc.).
This instruction set manual provides an easy and direct access to the instructions of the SGS-THOMSON
16-bit microcontrollers by listing them according to different criteria, and also unloads the technical man-
uals for the different devices from redundant information.
This manual also describes the different addressing mechanisms and the relation between the logical ad-
dresses used in a program and the resulting physical addresses.
There is also information provided to calculate the execution time for specific instructions depending on
the used address locations and also specific exceptions to the standard rules.
Description Levels
In the following sections the instructions are compiled according to different criteria in order to provide dif-
ferent levels of precision:
� Cross Reference Tables summarize all instructions in condensed tables
� The Instruction Set Summary groups the individual instructions into functional groups
� The Opcode Table references the instructions by their hexadecimal opcode
� The Instruction Description describes each instruction in full detail

All instructions listed in this manual are executed by the following devices:
ST10R165, ST10F167 and derivatives.

A few instructions (ATOMIC and EXTended instructions) have been added for these devices and are not
recognized by the following devices:
ST10F166, ST10R166, ST10166, ST10F160.

These differences are noted for each instruction, where applicable.

Table of Contents

2/124

1 INTRODUCTION AND OVERVIEW3

1.1 Addressing Modes3
1.2 Instruction State Times10

2 INSTRUCTION SET SUMMARY15

2.1Short Instruction Summary15
2.2 Instruction Set Summary18
2.3 Instru2ction Opcodes29

3 INSTRUCTION SET35

Instruction Description35

ADD . 41
ADDB .42
ADDC .43
ADDBC. 44
AND . 45
ANDB . 46
ASHR . 47
ATOMIC . 48
BAND . 49
BCLR .50
BCMP .51
BFLDH .52
BFLDL. .53
BMOV . 54
BMOVN. 55
BOR .56
BSET .57
BXOR .58
CALLA .59
CALLI .60
CALLR .61
CALLS .62
CMP . 63
CMPB .64
CMPD1. 65
CMPD2. 66
CMPI1. .67
CMPI2. 68
CPL. .69
CPLB .70
DISWDT . 71
DIV .72
DIVL .73
DIVLU . 74
DIVU .75
EINIT. .76

EXTR . 77
EXTP .78
EXTPR .79
EXTS . 80
EXTSR . 81
IDLE .82
JB .83
JBC. .84
JMPA .85
JMPI .86
JMPR . 87
JMPS .88
JNB. .89
JNBS . 90
MOV .91
MOVB. 92
MOVBS. 93
MOVBZ. 94
MUL .95
MULU . 96
NEG .97
NEGB . 98
NOP .99
OR .100
ORB . 101
PCALL .102
POP .103
PRIOR . 104
PUSH . 105
PWRDN .106
RET .107
RETI .108
RETP .109
RETS . 110
ROL . 111
ROR . 112
SCXT .113
SHL. .114
SHR .115
SRST .116
SRVWDT . 117
SUB . 118
SUBB .119
SUBC .120
SUBCB .121
TRAP . 122
XOR .123
XORB .124

ST10 Programming Manual

3/124

1 INTRODUCTION AND OVERVIEW

1.1 Addressing Modes

The SGS-THOMSON 16-bit microcontrollers provide a large number of powerful addressing modes for
access to word, byte and bit data (short, long, indirect), or to specify the target address of a branch in-
struction (absolute, relative, indirect). The different addressing modes use different formats and cover dif-
ferent scopes.

Short Addressing Modes
All of these addressing modes use an implicit base offset address to specify an 18-bit or 24-bit physical
address (ST10X166 devices use a 18-bit physical address).
Short addressing modes allow to access the GPR, SFR or bit-addressable memory space:

Physical Address = Base Address + ∆ * Short Address

Note: ∆ is 1 for byte GPRs, ∆ is 2 for word GPRs.

*) The Extended Special Function Register (ESFR) area is not available in the ST10X166 devices.

Mnemonic Physical Address Short Address Range Scope of Access

Rw (CP) + 2*Rw Rw = 0...15 GPRs (Word)

Rb (CP) + 1*Rb Rb = 0...15 GPRs (Byte)

reg

00’FE00h + 2*reg
00’F000h + 2*reg *)

(CP) + 2*(reg∧ 0Fh)
(CP) + 1*(reg∧ 0Fh)

reg = 00h...EFh
reg = 00h...EFh
reg = F0h...FFh
reg = F0h...FFh

SFRs (Word, Low byte)
ESFRs (Word, Low byte)*)

GPRs (Word)
GPRs (Bytes)

bitoff
00’FD00h + 2*bitoff
00’FF00h + 2*(bitoff∧ FFh)
(CP) + 2*(bitoff∧ 0Fh)

bitoff = 00h...7Fh
bitoff = 80h...EFh
bitoff = F0h...FFh

RAM Bit word offset
SFR Bit word offset
GPR Bit word offset

bitaddr
Word offset as with bitoff.
Immediate bit position.

bitoff = 00h...FFh
bitpos = 0...15

Any single bit

ST10 Programming Manual

4/124

Rw, Rb: Specifies direct access to any GPR in the currently active context (register bank). Both ’Rw’
and ’Rb’ require four bits in the instruction format. The base address of the current register
bank is determined by the content of register CP. ’Rw’specifies a 4-bit word GPR address rel-
ative to the base address (CP), while ’Rb’ specifies a 4 bit byte GPR address relative to the
base address (CP).

reg: Specifies direct access to any (E)SFR or GPR in the currently active context (register bank).
’reg’ requires eight bits in the instruction format. Short ’reg’ addresses from 00h to EFh always
specify (E)SFRs. In that case, the factor ’∆’ equates 2 and the base address is 00’FE00h for
the standard SFR area or 00’FE00h for the extended ESFR area. ‘reg’ accesses to the ESFR
area require a preceding EXT*R instruction to switch the base address (not available in the
ST10X166 devices). Depending on the opcode of an instruction, either the total word (for
word operations) or the low byte (for byte operations) of an SFR can be addressed via ’reg’.
Note that the high byte of an SFR cannot be accessed via the ’reg’ addressing mode. Short
’reg’ addresses from F0h to FFh always specify GPRs. In that case, only the lower four bits of
’reg’ are significant for physical address generation, and thus it can be regarded as being
identical to the address generation described for the ’Rb’ and ’Rw’ addressing modes.

bitoff: Specifies direct access to any word in the bit-addressable memory space. ’bitoff’ requires
eight bits in the instruction format. Depending on the specified ’bitoff’ range, different base
addresses are used to generate physical addresses: Short ’bitoff’ addresses from 00h to 7Fh
use 00’FD00h as a base address, and thus they specify the 128 highest internal RAM word
locations (00’FD00h to 00’FDFEh). Short ’bitoff’ addresses from 80h to EFh use 00’FF00h as
a base address to specify the highest internal SFR word locations (00’FF00h to 00’FFDEh) or
use 00’F100h as a base address to specify the highest internal ESFR word locations
(00’F100h to 00’F1DEh). ‘bitoff’ accesses to the ESFR area require a preceding EXT*R
instruction to switch the base address (not available in the ST10X166 devices). For short
’bitoff’ addresses from F0h to FFh, only the lowest four bits and the contents of the CP
register are used to generate the physical address of the selected word GPR.

bitaddr: Any bit address is specified by a word address within the bit-addressable memory space (see
’bitoff’), and by a bit position (’bitpos’) within that word. Thus, ’bitaddr’ requires twelve bits in
the instruction format.

Addressing Modes (Cont’d)

ST10 Programming Manual

5/124

Long Addressing Mode
This addressing mode uses one of the four DPP registers to specify a physical 18-bit or 24-bit address.
Any word or byte data within the entire address space can be accessed with this mode.
The second generation of ST10 devices, such as the ST10R165 or the ST10F167 also support an over-
ride mechanism for the DPP adressing scheme.
Note: Word accesses on odd byte addresses are not executed, but rather trigger a hardware trap.

After reset, the DPP registers are initialized in a way that all long addresses are directly mapped
onto the identical physical addresses, within segment 0.

Any long 16-bit address consists of two portions, which are interpreted in different ways. Bits 13...0 spec-
ify a 14-bit data page offset, while bits 15...14 specify the Data Page Pointer (1 of 4), which is to be used
to generate the physical 18-bit or 24-bit address (see figure below).

Figure 1. Interpretation of a 16-bit Long Address

The ST10X166 devices support an address space of up to 256 KByte, while the second generation of
ST10 devices support an address space of up to 16 MByte, so only the lower four or ten bits (respectively)
of the selected DPP register content are concatenated with the 14-bit data page offset to build the phys-
ical address.

The long addressing mode is referred to by the mnemonic ‘mem’.

Mnemonic Physical Address Long Address Range Scope of Access

mem (DPP0) || mem∧ 3FFFh
(DPP1) || mem∧ 3FFFh
(DPP2) || mem∧ 3FFFh
(DPP3) || mem∧ 3FFFh

0000h...3FFFh
4000h...7FFFh
8000h...BFFFh
C000h...FFFFh

Any Word or Byte

mem pag || mem∧ 3FFFh 0000h...FFFFh (14-bit) Any Word or Byte

mem seg || mem 0000h...FFFFh (16-bit) Any Word or Byte

015 14 13
16-bit Long Address

DPP0
DPP1
DPP2
DPP3

14-bit page offset

18/24-bit Physical Address

Addressing Modes (Cont’d)

ST10 Programming Manual

6/124

DPP Override Mechanism in the second generation of ST10 devices
Other than the older devices from the ST10X166 group the second generation of ST10 devices such as
the ST10R165 or the ST10F167 provide an override mechanism that allows to bypass the DPP address-
ing scheme temporarily.

The EXTP(R) and EXTS(R) instructions override this addressing mechanism. Instruction EXTP(R) re-
places the content of the respective DPP register, while instruction EXTS(R) concatenates the complete
16-bit long address with the specified segment base address. The overriding page or segment may be
specified directly as a constant (#pag, #seg) or via a word GPR (Rw).

Figure 2 . Overriding the DPP Mechanism.

Indirect Addressing Modes
These addressing modes can be regarded as a combination of short and long addressing modes. This
means that long 16-bit addresses are specified indirectly by the contents of a word GPR, which is speci-
fied directly by a short 4-bit address (’Rw’=0 to 15). There are indirect addressing modes, which add a
constant value to the GPR contents before the long 16-bit address is calculated. Other indirect address-
ing modes allow decrementing or incrementing the indirect address pointers (GPR content) by 2 or 1 (re-
ferring to words or bytes).

In each case, one of the four DPP registers is used to specify physical 18-bit or 24-bit addresses. Any word
or byte data within the entire memory space can be addressed indirectly.
Note: The exceptions for instructions EXTP(R) and EXTS(R), ie. overriding the DPP mechanism, apply

in the same way as described for the long addressing modes.

015 14 13
16-bit Long Address

#pag 14-bit page offset

24-bit Physical Address

015
16-bit Long Address

#seg 16-bit segment offset

24-bit Physical Address

EXTP(R):

EXTS(R):

Addressing Modes (Cont’d)

ST10 Programming Manual

7/124

Some instructions only use the lowest four word GPRs (R3...R0) as indirect address pointers, which are
specified via short 2-bit addresses in that case.
Note: Word accesses on odd byte addresses are not executed, but rather trigger a hardware trap.

After reset, the DPP registers are initialized in a way that all indirect long addresses are directly
mapped onto the identical physical addresses.

Physical addresses are generated from indirect address pointers via the following algorithm:

1) Calculate the physical address of the word GPR, which is used as indirect address pointer, using the
specified short address (’Rw’) and the current register bank base address (CP).

GPR Address = (CP) + 2 * Short Address

2) Pre-decremented indirect address pointers (‘-Rw’) are decremented by a data-type-dependent value
(∆=1 for byte operations, ∆=2 for word operations), before the long 16-bit address is generated:

(GPR Address) = (GPR Address) - ∆ ; [optional step!]

3) Calculate the long 16-bit address by adding a constant value (if selected) to the content of the indirect
address pointer:

Long Address = (GPR Pointer) + Constant

4) Calculate the physical 18-bit or 24-bit address using the resulting long address and the corresponding
DPP register content (see long ’mem’ addressing modes).

Physical Address = (DPPi) + Page offset

5) Post-Incremented indirect address pointers (‘Rw+’) are incremented by a data-type-dependent value
(∆=1 for byte operations, ∆=2 for word operations):

(GPR Pointer) = (GPR Pointer) + ∆ ; [optional step!]

The following indirect addressing modes are provided:

Mnemonic Particularities

[Rw] Most instructions accept any GPR (R15...R0) as indirect address pointer.
Some instructions, however, only accept the lower four GPRs (R3...R0).

[Rw+] The specified indirect address pointer is automatically post-incremented by 2 or 1 (for word or byte
data operations) after the access.

[-Rw] The specified indirect address pointer is automatically pre-decremented by 2 or 1 (for word or byte
data operations) before the access.

[Rw+#data16] The specified 16-bit constant is added to the indirect address pointer, before the long address is
calculated.

Addressing Modes (Cont’d)

ST10 Programming Manual

8/124

Constants
The ST10 Family instruction set also supports the use of wordwide or bytewide immediate constants. For
an optimum utilization of the available code storage, these constants are represented in the instruction
formats by either 3, 4, 8 or 16 bits. Thus, short constants are always zero-extended while long constants
are truncated if necessary to match the data format required for the particular operation (see table below):

Note: Immediate constants are always signified by a leading number sign ’#’.

Branch Target Addressing Modes
Different addressing modes are provided to specify the target address and segment of jump or call in-
structions. Relative, absolute and indirect modes can be used to update the Instruction Pointer register
(IP), while the Code Segment Pointer register (CSP) can only be updated with an absolute value. A spe-
cial mode is provided to address the interrupt and trap jump vector table, which resides in the lowest por-
tion of code segment 0.

Mnemonic Word Operation Byte Operation

#data3 0000h + data3 00h + data3

#data4 0000h + data4 00h + data4

#data8 0000h + data8 data8

#data16 data16 data16 ∧ FFh

#mask 0000h + mask mask

Mnemonic Target Address Target Segment Valid Address Range

caddr (IP) = caddr - caddr = 0000h...FFFEh

rel (IP) = (IP) + 2*rel
(IP) = (IP) + 2*(~rel+1)

-
-

rel = 00h...7Fh
rel = 80h...FFh

[Rw] (IP) = ((CP) + 2*Rw) - Rw = 0...15

seg - (CSP) = seg seg = 0...3

#trap7 (IP) = 0000h + 4*trap7 (CSP) = 0000h trap7 = 00h...7Fh

Addressing Modes (Cont’d)

ST10 Programming Manual

9/124

caddr: Specifies an absolute 16-bit code address within the current segment. Branches MAY NOT be
taken to odd code addresses. Therefore, the least significant bit of ’caddr’ must always contain a
’0’, otherwise a hardware trap would occur.

rel: This mnemonic represents an 8-bit signed word offset address relative to the current Instruction
Pointer contents, which points to the instruction after the branch instruction. Depending on the
offset address range, either forward (’rel’= 00h to 7Fh) or backward (’rel’= 80h to FFh) branches
are possible. The branch instruction itself is repeatedly executed, when ’rel’ = ’-1’ (FFh) for a
word-sized branch instruction, or ’rel’ = ’-2’ (FEh) for a double-word-sized branch instruction.

[Rw]: In this case, the 16-bit branch target instruction address is determined indirectly by the content of
a word GPR. In contrast to indirect data addresses, indirectly specified code addresses are NOT
calculated via additional pointer registers (eg. DPP registers). Branches MAY NOT be taken to
odd code addresses. Therefore, the least significant bit of the address pointer GPR must always
contain a ’0’, otherwise a hardware trap would occur.

seg: Specifies an absolute code segment number. The devices of the ST10X166 group support 4 dif-
ferent code segments, while the devices of the second generation of ST10 support 256 different
code segments, so only the two or eight lower bits (respectively) of the ’seg’ operand value are
used for updating the CSP register.

#trap7: Specifies a particular interrupt or trap number for branching to the corresponding interrupt or trap
service routine via a jump vector table. Trap numbers from 00h to 7Fh can be specified, which
allow to access any double word code location within the address range 00’0000h...00’01FCh in
code segment 0 (ie. the interrupt jump vector table).
For the association of trap numbers with the corresponding interrupt or trap sources please refer
to chapter “Interrupt and Trap Functions”.

Addressing Modes (Cont’d)

ST10 Programming Manual

10/124

1.2 Instruction State Times

Basically, the time to execute an instruction depends on where the instruction is fetched from, and where
possible operands are read from or written to. The fastest processing mode is to execute a program
fetched from the internal ROM. In that case mostof the instructions can be processed within just one ma-
chine cycle, which is also the general minimum execution time.
All external memory accesses are performed by the on-chip External Bus Controller (EBC), which works
in parallel with the CPU. Mostly, instructions from external memory cannot be processed as fast as in-
structions from the internal ROM, because some data transfers, which internally can be performed in par-
allel, have to be performed sequentially via the external interface. In contrast to internal ROM program ex-
ecution, the time required to process an external program additionally depends on the length of the in-
structions and operands, on the selected bus mode, and on the duration of an external memory cycle,
which is partly selectable by the user.
Processing a program from the internal RAM space is not as fast as execution from the internal ROM ar-
ea, but it offers a lot of flexibility (ie. for loading temporary programs into the internal RAM via the chip’s
serial interface, or end-of-line programming via the bootstrap loader).

The following description allows evaluating the minimum and maximum program execution times. This
will be sufficient for most requirements. For an exact determination of the instructions’ state times it is rec-
ommended to use the facilities provided by simulators or emulators.

This section defines the subsequently used time units, summarizes the minimum (standard) state times of
the 16-bit microcontroller instructions, and describes the exceptions from the standard timing.

Time Unit Definitions
The following time units are used to describe the instructions’ processing times:
[fCPU]: CPU operating frequency (may vary from 1 MHz to 20 MHz).

[State]: One state time is specified by one CPU clock period. Henceforth, one State is used as the basic
time unit, because it represents the shortest period of time which has to be considered for instruction
timing evaluations.

1 [State]= 1/fCPU [s] ; for fCPU = variable
= 50 [ns] ; for fCPU = 20 MHz

[ACT]: This ALE (Address Latch Enable) Cycle Time specifies the time required to perform one external
memory access. One ALE Cycle Time consists of either two (for demultiplexed external bus modes) or
three (for multiplexed external bus modes) state times plus a number of state times, which is determined
by the number of waitstates programmed in the MCTC (Memory Cycle Time Control) and MTTC (Memory
Tristate Time Control) bit fields of the SYSCON/BUSCONx registers.

In case of demultiplexed external bus modes:
1*ACT = (2 + (15 – MCTC) + (1 – MTTC)) * States

= 100 ns ... 900 ns ; for fCPU = 20 MHz

In case of multiplexed external bus modes:
1*ACT = 3 + (15 – MCTC) + (1 – MTTC) * States

= 150 ns ... 950 ns ; for fCPU = 20 MHz

ST10 Programming Manual

11/124

The total time (Ttot), which a particular part of a program takes to be processed, can be calculated by the
sum of the single instruction processing times (TIn) of the considered instructions plus an offset value of
6 state times which considers the solitary filling of the pipeline, as follows:

Ttot = TI1 + TI2 + ... + TIn + 6 * States

The time TIn, which a single instruction takes to be processed, consists of a minimum number (TImin)
plus an additional number (TIadd) of instruction state times and/or ALE Cycle Times, as follows:

TIn = TImin + TIadd

Minimum State Times
The table below shows the minimum number of state times required to process an instruction fetched
from the internal ROM (TImin (ROM)). The minimum number of state times for instructions fetched from
the internal RAM (TImin (RAM)), or of ALE Cycle Times for instructions fetched from the external memory
(TImin (ext)), can also be easily calculated by means of this table.
Most of the 16-bit microcontroller instructions - except some of the branches, the multiplication, the divi-
sion and a special move instruction - require a minimum of two state times. In case of internal ROM pro-
gram execution there is no execution time dependency on the instruction length except for some special
branch situations. The injected target instruction of a cache jump instruction can be considered for timing
evaluations as if being executed from the internal ROM, regardless of which memory area the rest of the
current program is really fetched from.
For some of the branch instructions the table below represents both the standard number of state times
(ie. the corresponding branch is taken) and an additional TImin value in parentheses, which refers to the
case that either the branch condition is not met or a cache jump is taken.

Minimum Instruction State Times [Unit = ns]

Instruction
TImin (ROM)
[States]

TImin (ROM)
(@ 20 MHz CPU clock)

CALLI, CALLA

CALLS, CALLR, PCALL

JB, JBC, JNB, JNBS

JMPS

JMPA, JMPI, JMPR

MUL, MULU

DIV, DIVL, DIVU, DIVLU

MOV[B] Rn, [Rm+#data16]

RET, RETI, RETP, RETS

TRAP

All other instructions

4 (2)

4

4 (2)

4

4 (2)

10

20

4

4

4

2

200 (100)

200

200 (100)

200

200 (100)

500

1000

200

200

200

100

Instruction State Times (Cont’d)

ST10 Programming Manual

12/124

Instructions executed from the internal RAM require the same minimum time as if being fetched from the
internal ROM plus an instruction-length dependent number of state times, as follows:

For 2-byte instructions:TImin(RAM) = TImin(ROM) + 4 * States

For 4-byte instructions:TImin(RAM) = TImin(ROM) + 6 * States

In contrast to the internal ROM program execution, the minimum time TImin(ext) to process an external
instruction additionally depends on the instruction length. TImin(ext) is either 1 ALE Cycle Time for most
of the 2-byte instructions, or 2 ALE Cycle Times for most of the 4-byte instructions. The following formula
represents the minimum execution time of instructions fetched from an external memory via a 16-bit wide
data bus:

For 2-byte instructions:TImin(ext) = 1*ACT + (TImin(ROM) - 2) * States

For 4-byte instructions:TImin(ext) = 2*ACTs + (TImin(ROM) - 2) * States

Note: For instructions fetched from an external memory via an 8-bit wide data bus, the minimum number
of required ALE Cycle Times is twice the number for a 16-bit wide bus.

Additional State Times
Some operand accesses can extend the execution time of an instruction TIn. Since the additional time TI-
add is mostly caused by internal instruction pipelining, it often will be possible to evade these timing ef-
fects in time-critical program modules by means of a suitable rearrangement of the corresponding instruc-
tion sequences. Simulators and emulators offer a lot of facilities, which support the user in optimizing the
program whenever required.

• Internal ROM operand reads: TIadd = 2 * States
Both byte and word operand reads always require 2 additional state times.

• Internal RAM operand reads via indirect addressing modes: TIadd = 0 or 1 * State
Reading a GPR or any other directly addressed operand within the internal RAM space does NOT cause
additional state times. However, reading an indirectly addressed internal RAM operand will extend the
processing time by 1 state time, if the preceding instruction auto-increments or auto-decrements a GPR,
as shown in the following example:

In : MOV R1 , [R0+] ; auto-increment R0

In+1 : MOV [R3], [R2] ; if R2 points into the internal RAM space:
; TIadd = 1 * State

In this case, the additional time can simply be avoided by putting another suitable instruction before the
instruction In+1 indirectly reading the internal RAM.

Instruction State Times (Cont’d)

ST10 Programming Manual

13/124

• Internal SFR operand reads: TIadd = 0, 1 * State or 2 * States
Mostly, SFR read accesses do NOT require additional processing time. In some rare cases, however, ei-
ther one or two additional state times will be caused by particular SFR operations, as follows:
– Reading an SFR immediately after an instruction, which writes to the internal SFR space, as shown in
the following example:

In : MOV T0, #1000h ; write to Timer 0

In+1 : ADD R3, T1 ; read from Timer 1: TIadd = 1 * State

– Reading the PSW register immediately after an instruction which implicitly updates the condition flags,
as shown in the following example:

In : ADD R0, #1000h ; implicit modification of PSW flags

In+1 : BAND C, Z ; read from PSW: TIadd = 2 * States

– Implicitly incrementing or decrementing the SP register immediately after an instruction which explicitly
writes to the SP register, as shown in the following example:

In : MOV SP, #0FB00h ; explicit update of the stack pointer

In+1 : SCX R1, #1000h ; implicit decrement of the stack pointer:

: TIadd = 2 * States

In these cases, the extra state times can be avoided by putting other suitable instructions before the in-
struction In+1 reading the SFR.

• External operand reads: TIadd = 1 * ACT

Any external operand reading via a 16-bit wide data bus requires one additional ALE Cycle Time. Read-
ing word operands via an 8-bit wide data bus takes twice as much time (2 ALE Cycle Times) as the read-
ing of byte operands.

• External operand writes: TIadd = 0 * State ... 1 * ACT
Writing an external operand via a 16-bit wide data bus takes one additional ALE Cycle Time. For timing
calculations of external program parts, this extra time must always be considered. The value of TIadd
which must be considered for timing evaluations of internal program parts, may fluctuate between 0 state
times and 1 ALE Cycle Time. This is because external writes are normally performed in parallel to other
CPU operations. Thus, TIadd could already have been considered in the standard processing time of an-
other instruction. Writing a word operand via an 8-bit wide data bus requires twice as much time (2 ALE
Cycle Times) as the writing of a byte operand.

Instruction State Times (Cont’d)

ST10 Programming Manual

14/124

• Jumps into the internal ROM space: TIadd = 0 or 2 * States
The minimum time of 4 state times for standard jumps into the internal ROM space will be extended by 2
additional state times, if the branch target instruction is a double word instruction at a non-aligned double
word location (xxx2h, xxx6h, xxxAh, xxxEh), as shown in the following example:

label : ; any non-aligned double word instruction
: (eg. at location 0FFEh)

.... :

In+1 : JMPA cc_UC, label ; if a standard branch is taken:
: TIadd = 2 * States (TIn = 6 * States)

A cache jump, which normally requires just 2 state times, will be extended by 2 additional state times, if
both the cached jump target instruction and its successor instruction are non-aligned double word instruc-
tions, as shown in the following example:

label : ; any non-aligned double word instruction
: (eg. at location 12FAh)

It+1 : ; any non-aligned double word instruction
: (eg. at location 12FEh)

In+1 :JMPR cc_UC, label ; provided that a cache jump is taken:
: TIadd = 2 * States (TIn = 4 * States)

If required, these extra state times can be avoided by allocating double word jump target instructions to
aligned double word addresses (xxx0h, xxx4h, xxx8h, xxxCh).

• Testing Branch Conditions: TIadd = 0 or 1 * States
Mostly, NO extra time is required for conditional branch instructions to decide whether a branch condition
is met or not. However, an additional state time is required if the preceding instruction writes to the PSW
register, as shown in the following example:

In : BSET USR0 ; write to PSW

In+1 :JMPR cc_Z, label ; test condition flag in PSW: TIadd = 1 * State

In this case, the extra state time can simply be intercepted by putting another suitable instruction before
the conditional branch instruction.

Instruction State Times (Cont’d)

ST10 Programming Manual

15/124

2 INSTRUCTION SET SUMMARY

2.1 Short Instruction Summary

The following compressed cross-reference tables quickly identify a specific instruction and provide basic
information about it. Two ordering schemes are included:

The first table (two pages) is a compressed cross-reference table that quickly identifies a specific hexa-
decimal opcode with the respective mnemonic.

The second table lists the instructions by their mnemonic and identifies the addressing modes that may
be used with a specific instruction and the instruction length depending on the selected addressing mode
(in bytes).

This reference helps to optimize instruction sequences in terms of code size and/or execution time.

• 0x 1x 2x 3x 4x 5x 6x 7x

x0 ADD ADDC SUB SUBC CMP XOR AND OR

x1 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x2 ADD ADDC SUB SUBC CMP XOR AND OR

x3 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x4 ADD ADDC SUB SUBC - XOR AND OR

x5 ADDB ADDCB SUBB SUBCB - XORB ANDB ORB

x6 ADD ADDC SUB SUBC CMP XOR AND OR

x7 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x8 ADD ADDC SUB SUBC CMP XOR AND OR

x9 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

xA BFLDL BFLDH BCMP BMOVN BMOV BOR BAND BXOR

xB MUL MULU PRIOR - DIV DIVU DIVL DIVLU

xC ROL ROL ROR ROR SHL SHL SHR SHR

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET

ST10 Programming Manual

16/124

Note:
- Both ordering schemes (hexadecimal opcode and mnemonic) are provided in more detailled lists in the

following sections of this manual.
- The ATOMIC and EXTended instructions are not available in the ST10X166 devices.

They are marked in italic in the cross-reference table.

1) Byte oriented instructions (suffix ‘B’) use Rb instead of Rw (not with [Rwn]!).
2) Byte oriented instructions (suffix ‘B’) use #data8 instead of #data16.
3) The ATOMIC and EXTended instructions are not available in the ST10X166 devices.

8x 9x Ax Bx Cx Dx Ex Fx

x0 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS MOV MOV

x1 NEG CPL NEGB CPLB - AT/EXTR MOVB MOVB

x2 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS PCALL MOV

x3 - - - - - - - MOVB

x4 MOV MOV MOVB MOVB MOV MOV MOVB MOVB

x5 - - DISWDT EINIT MOVBZ MOVBS - -

x6 CMPI1 CMPI2 CMPD1 CMPD2 SCXT SCXT MOV MOV

x7 IDLE PWRDN SRVWDT SRST - EXTP/S/R MOVB MOVB

x8 MOV MOV MOV MOV MOV MOV MOV -

x9 MOVB MOVB MOVB MOVB MOVB MOVB MOVB -

xA JB JNB JBC JNBS CALLA CALLS JMPA JMPS

xB - TRAP CALLI CALLR RET RETS RETP RETI

xC - JMPI ASHR ASHR NOP EXTP/S/R PUSH POP

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET

Short Instruction Summary (Cont’d)

ST10 Programming Manual

17/124

Mnemonic Addressing Modes Bytes Mnemonic Addressing Modes Bytes

ADD[B]
ADDC[B]
AND[B]
OR[B]
SUB[B]
SUBC[B]
XOR[B]

Rwn Rwm 1)

Rwn Rwi] 1)

Rwn Rwi+] 1)

Rwn #data3 1)

reg #data16 2)

reg mem
mem reg

2
2
2
2

4
4
4

CPL[B]
NEG[B]

Rwn 1) 2

DIV
DIVL
DIVLU
DIVU

Rwn 2

MUL
MULU

Rwn Rwm 2

ASHR
ROL / ROR
SHL / SHR

Rwn Rwm
Rwn #data4

2
2

CMPD1/2
CMPI1/2

Rwn #data4
Rwn #data16
Rwn mem

2
4
4

BAND
BCMP
BMOV
BMOVN
BOR / BXOR

bitaddrZ.z bitaddrQ.q 4 CMP[B] Rwn Rwm 1)

Rwn [Rwi] 1)

Rwn [Rwi+] 1)

Rwn #data3 1)

reg #data16 2)

reg mem

2
2
2
2
4
4

BCLR
BSET

bitaddrQ.q 2 CALLA
JMPA

cc caddr 4

BFLDH
BFLDL

bitoffQ #mask8 #data8 2 CALLI
JMPI

cc [Rwn] 2

MOV[B] Rwn Rwm 1)

Rwn #data4 1)

Rwn Rwm] 1)

Rwn Rwm+] 1)

[Rwm Rwn 1)

[-Rwm] Rwn 1)

[Rwn] [Rwm]
[Rwn+] [Rwm]
[Rwn] [Rwm+]

reg #data16 2)

Rwn [Rwm+#d16] 1)

[Rwm+#d16] Rwn 1)

[Rwn] mem
mem [Rwn]
reg mem
mem reg

2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4

CALLS
JMPS

seg caddr 4

CALLR rel 2

JMPR cc rel 2

JB
JBC
JNB
JNBS

bitaddrQ.q rel 4

PCALL reg caddr 4

POP
PUSH
RETP

reg 2

SCXT reg #data16
reg mem

4
4

PRIOR Rwn Rwm 2

MOVBS
MOVBZ

Rwn Rbm
reg mem
mem reg

2
4
4

TRAP #trap7 2

ATOMIC
EXTR

#data2 3) 2

EXTS
EXTSR

Rwm #data2 3)

#seg #data2
2
4

EXTP
EXTPR

Rwm #data2 3)

#pag #data2
2
4

NOP
RET
RETI
RETS

- 2 SRST/IDLE
PWRDN
SRVWDT
DISWDT
EINIT

- 4

ST10 Programming Manual

18/124

2.2 Instruction Set Summary

This chapter summarizes the instructions by listing them according to their functional class. This allows to
identify the right instruction(s) for a specific required function.
In addition, the minimum number of state times required for the instruction execution are given for several
program execution configurations: internal ROM, internal RAM, external memory with a 16-bit demulti-
plexed and multiplexed bus or an 8-bit demultiplexed and multiplexed bus.
These state time figures do not take into account possible wait states on external busses or possible ad-
ditional state times induced by some operand fetches.

The following notes apply to this summary:

Data Addressing Modes
Rw: – Word GPR (R0, R1, … , R15)

Rb: – Byte GPR (RL0, RH0, …, RL7, RH7)

reg: – SFR or GPR
(in case of a byte operation on an SFR, only the low byte can be accessed via ‘reg’)

mem: – Direct word or byte memory location

[…]: – Indirect word or byte memory location
(Any word GPR can be used as indirect address pointer, except for the arithmetic, logical and
compare instructions, where only R0 to R3 are allowed)

bitaddr: – Direct bit in the bit-addressable memory area

bitoff: – Direct word in the bit-addressable memory area

#data: – Immediate constant
(The number of significant bits which can be specified by the user is represented by the
respective appendix ’x’)

#mask8:– Immediate 8-bit mask used for bit-field modifications

Multiply and Divide Operations

The MDL and MDH registers are implicit source and/or destination operands of the multiply and divide
instructions.

Branch Target Addressing Modes

caddr: – Direct 16-bit jump target address (Updates the Instruction Pointer)

seg: – Direct 2-bit segment address
(Updates the Code Segment Pointer)

rel: – Signed 8-bit jump target word offset address relative to the Instruction Pointer of the
following instruction

#trap7: – Immediate 7-bit trap or interrupt number.

ST10 Programming Manual

19/124

Extension Operations

The EXT* instructions override the standard DPP addressing scheme:

#pag10:– Immediate 10-bit page address.

#seg8: – Immediate 8-bit segment address.

Note: The EXTended instructions are not available in the ST10X166 devices.

Branch Condition Codes

cc: Symbolically specifiable condition codes

cc_UC – Unconditional
cc_Z – Zero
cc_NZ – Not Zero
cc_V – Overflow
cc_NV – No Overflow
cc_N – Negative
cc_NN – Not Negative
cc_C – Carry
cc_NC – No Carry
cc_EQ – Equal
cc_NE – Not Equal
cc_ULT – Unsigned Less Than
cc_ULE – Unsigned Less Than or Equal
cc_UGE – Unsigned Greater Than or Equal
cc_UGT – Unsigned Greater Than
cc_SLE – Signed Less Than or Equal
cc_SGE – Signed Greater Than or Equal
cc_SGT – Signed Greater Than
cc_NET – Not Equal and Not End-of-Table

Instruction Set Summary (Cont’d)

ST10 Programming Manual

20/124

Instruction Set Summary (Cont’d)

Mnemonic Description Int.
ROM

Int.
RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Arithmetic Operations

ADD Rw, Rw Add direct word GPR to direct GPR 2 6 2 3 4 6 2

ADD Rw, [Rw] Add indirect word memory to direct GPR 2 6 2 3 4 6 2

ADD Rw, [Rw +] Add indirect word memory to direct GPR and
post- increment source pointer by 2 2 6 2 3 4 6 2

ADD Rw, #data3 Add immediate word data to direct GPR 2 6 2 3 4 6 2

ADD reg, #data16 Add immediate word data to direct register 2 8 4 6 8 12 4

ADD reg, mem Add direct word memory to direct register 2 8 4 6 8 12 4

ADD mem, reg Add direct word register to direct memory 2 8 4 6 8 12 4

ADDB Rb, Rb Add direct byte GPR to direct GPR 2 6 2 3 4 6 2

ADDB Rb, [Rw] Add indirect byte memory to direct GPR 2 6 2 3 4 6 2

ADDB Rb, [Rw +] Add indirect byte memory to direct GPR and
post-increment source pointer by 1 2 6 2 3 4 6 2

ADDB Rb, #data3 Add immediate byte data to direct GPR 2 6 2 3 4 6 2

ADDB reg, #data16 Add immediate byte data to direct register 2 8 4 6 8 12 4

ADDB reg, mem Add direct byte memory to direct register 2 8 4 6 8 12 4

ADDB mem, reg Add direct byte register to direct memory 2 8 4 6 8 12 4

ADDC Rw, Rw Add direct word GPR to direct GPR with Carry 2 6 2 3 4 6 2

ADDC Rw, [Rw] Addindirect wordmemorytodirect GPRwithCarry 2 6 2 3 4 6 2

ADDC Rw, [Rw +] Add indirect word memory to direct GPR with
Carry and post-increment source pointer by 2 2 6 2 3 4 6 2

ADDC Rw, #data3 Add immediate worddata todirectGPR withCarry 2 6 2 3 4 6 2

ADDC reg, #data16 Add immediate word data to direct register with
Carry 2 8 4 6 8 12 4

ADDC reg, mem Adddirectwordmemorytodirect registerwithCarry 2 8 4 6 8 12 4

ADDC mem, reg Adddirectwordregistertodirectmemory withCarry 2 8 4 6 8 12 4

ADDCB Rb, Rb Add direct byte GPR to direct GPR with Carry 2 6 2 3 4 6 2

ADDCB Rb, [Rw] Add indirectbytememory todirect GPRwith Carry 2 6 2 3 4 6 2

ADDCB Rb, [Rw +] Add indirect bytememory todirectGPR withCarry
and post-increment source pointer by 1 2 6 2 3 4 6 2

ADDCB Rb, #data3 Add immediate byte data todirect GPR with Carry 2 6 2 3 4 6 2

ADDCBreg, #data16 Add immediate byte data to direct register with
Carry 2 8 4 6 8 12 4

ADDCB reg, mem AdddirectbytememorytodirectregisterwithCarry 2 8 4 6 8 12 4

ADDCB mem, reg Add direct byte register to direct memory with
Carry 2 8 4 6 8 12 4

SUB Rw, Rw Subtract direct word GPR from direct GPR 2 6 2 3 4 6 2

SUB Rw, [Rw] Subtract indirect word memory from direct GPR 2 6 2 3 4 6 2

SUB Rw, [Rw +] Subtract indirect word memory from direct GPR
and post-increment source pointer by 2 2 6 2 3 4 6 2

ST10 Programming Manual

21/124

Arithmetic Operations (cont’d)

SUB Rw, #data3 Subtract immediate word data from direct GPR 2 6 2 3 4 6 2

SUB reg, #data16 Subtract immediate worddata from direct register 2 8 4 6 8 12 4

SUB reg, mem Subtract direct word memory from direct register 2 8 4 6 8 12 4

SUB mem, reg Subtract direct word register from direct memory 2 8 4 6 8 12 4

SUBB Rb, Rb Subtract direct byte GPR from direct GPR 2 6 2 3 4 6 2

SUBB Rb, [Rw] Subtract indirect byte memory from direct GPR 2 6 2 3 4 6 2

SUBB Rb, [Rw +] Subtract indirect byte memory from direct GPR
and post-increment source pointer by 1 2 6 2 3 4 6 2

SUBB Rb, #data3 Subtract immediate byte data from direct GPR 2 6 2 3 4 6 2

SUBB reg, #data16 Subtract immediate byte data from direct register 2 8 4 6 8 12 4

SUBB reg, mem Subtract direct byte memory from direct register 2 8 4 6 8 12 4

SUBB mem, reg Subtract direct byte register from direct memory 2 8 4 6 8 12 4

SUBC Rw, Rw Subtract direct word GPR from direct GPR with
Carry 2 6 2 3 4 6 2

SUBC Rw, [Rw] Subtract indirect word memory from direct GPR
with Carry 2 6 2 3 4 6 2

SUBC Rw, [Rw +] Subtract indirect word memory from direct GPR
with Carry andpost-increment source pointerby 2 2 6 2 3 4 6 2

SUBC Rw, #data3 Subtract immediate word data from direct GPR
with Carry 2 6 2 3 4 6 2

SUBC reg, #data16 Subtract immediate word data from direct regis-
ter with Carry 2 8 4 6 8 12 4

SUBC reg, mem Subtract direct word memory from direct regis-
ter with Carry 2 8 4 6 8 12 4

SUBC mem, reg Subtract direct word register from direct memo-
ry with Carry 2 8 4 6 8 12 4

SUBCB Rb, Rb Subtract direct byte GPR from direct GPR with
Carry 2 6 2 3 4 6 2

SUBCB Rb, [Rw] Subtract indirect byte memory from direct GPR
with Carry 2 6 2 3 4 6 2

SUBCB Rb, [Rw +] Subtract indirect byte memory from direct GPR
with Carry andpost-increment source pointerby 1 2 6 2 3 4 6 2

SUBCB Rb, #data3 Subtract immediate byte data from direct GPR
with Carry 2 6 2 3 4 6 2

SUBCBreg, #data16 Subtract immediate byte data from direct regis-
ter with Carry 2 8 4 6 8 12 4

SUBCB reg, mem Subtract direct byte memory from direct register
with Carry 2 8 4 6 8 12 4

SUBCB mem, reg Subtract direct byte register from direct memory
with Carry 2 8 4 6 8 12 4

MUL Rw, Rw Signed multiply direct GPR by direct GPR (16-
16-bit) 10 14 10 11 12 14 2

MULU Rw, Rw Unsigned multiply direct GPR by direct GPR
(16-16-bit) 10 14 10 11 12 14 2

Mnemonic Description
Int.

ROM
Int.

RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Instruction Set Summary (cont’d)

ST10 Programming Manual

22/124

Arithmetic Operations (cont’d)

DIV Rw Signed divide register MDL by direct GPR (16-/
16-bit) 20 24 20 21 22 24 2

DIVL Rw Signed long divide register MD by direct GPR
(32-/16-bit) 20 24 20 21 22 24 2

DIVLU Rw Unsigned long divide register MD by direct GPR
(32-/16-bit) 20 24 20 21 22 24 2

DIVU Rw Unsigned divide register MDL by direct GPR
(16-/16-bit) 20 24 20 21 22 24 2

CPL Rw Complement direct word GPR 2 6 2 3 4 6 2

CPLB Rb Complement direct byte GPR 2 6 2 3 4 6 2

NEG Rw Negate direct word GPR 2 6 2 3 4 6 2

NEGB Rb Negate direct byte GPR 2 6 2 3 4 6 2

Logical Instructions

AND Rw, Rw Bitwise AND direct word GPR with direct GPR 2 6 2 3 4 6 2

AND Rw, [Rw] Bitwise ANDindirectwordmemorywithdirectGPR 2 6 2 3 4 6 2

AND Rw, [Rw +] Bitwise AND indirect word memory with direct
GPR and post-increment source pointer by 2 2 6 2 3 4 6 2

AND Rw, #data3 Bitwise ANDimmediate worddatawith direct GPR 2 6 2 3 4 6 2

AND reg, #data16 Bitwise AND immediate word data with direct
register 2 8 4 6 8 12 4

AND reg, mem Bitwise AND direct word memory with direct
register 2 8 4 6 8 12 4

AND mem, reg Bitwise AND direct word register with direct
memory 2 8 4 6 8 12 4

ANDB Rb, Rb Bitwise AND direct byte GPR with direct GPR 2 6 2 3 4 6 2

ANDB Rb, [Rw] Bitwise ANDindirectbytememory withdirectGPR 2 6 2 3 4 6 2

ANDB Rb, [Rw +] Bitwise AND indirect byte memory with direct
GPR and post-increment source pointer by 1 2 6 2 3 4 6 2

ANDB Rb, #data3 Bitwise AND immediate bytedata with direct GPR 2 6 2 3 4 6 2

ANDB reg, #data16 Bitwise AND immediate byte data with direct
register 2 8 4 6 8 12 4

ANDB reg, mem Bitwise ANDdirectbytememorywithdirect register 2 8 4 6 8 12 4

ANDB mem, reg Bitwise ANDdirectbyteregisterwithdirectmemory 2 8 4 6 8 12 4

OR Rw, Rw Bitwise OR direct word GPR with direct GPR 2 6 2 3 4 6 2

OR Rw, [Rw] Bitwise ORindirect wordmemory withdirect GPR 2 6 2 3 4 6 2

OR Rw, [Rw +] Bitwise OR indirect word memory with direct
GPR and post-increment source pointer by 2 2 6 2 3 4 6 2

OR Rw, #data3 Bitwise OR immediate word data with direct GPR 2 6 2 3 4 6 2

OR reg, #data16 BitwiseORimmediateworddatawithdirectregister 2 8 4 6 8 12 4

OR reg, mem Bitwise ORdirect wordmemory withdirect register 2 8 4 6 8 12 4

OR mem, reg Bitwise ORdirect wordregister with direct memory 2 8 4 6 8 12 4

Mnemonic Description
Int.

ROM
Int.

RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Instruction Set Summary (cont’d)

ST10 Programming Manual

23/124

Logical Instructions (cont’d)

ORB Rb, Rb Bitwise OR direct byte GPR with direct GPR 2 6 2 3 4 6 2

ORB Rb, [Rw] Bitwise OR indirect byte memory with direct GPR 2 6 2 3 4 6 2

ORB Rb, [Rw +] Bitwise OR indirect byte memory with direct
GPR andpost-increment source pointer by 1 2 6 2 3 4 6 2

ORB Rb, #data3 Bitwise OR immediate byte data with direct GPR 2 6 2 3 4 6 2

ORB reg, #data16 BitwiseORimmediatebytedatawithdirectregister 2 8 4 6 8 12 4

ORB reg, mem Bitwise ORdirect bytememory with direct register 2 8 4 6 8 12 4

ORB mem, reg Bitwise ORdirect byteregister with direct memory 2 8 4 6 8 12 4

XOR Rw, Rw Bitwise XOR direct word GPR with direct GPR 2 6 2 3 4 6 2

XOR Rw, [Rw] BitwiseXORindirectwordmemory withdirectGPR 2 6 2 3 4 6 2

XOR Rw, [Rw +] Bitwise XOR indirect word memory with direct
GPR and post-increment source pointer by 2 2 6 2 3 4 6 2

XOR Rw, #data3 BitwiseXORimmediate worddata with directGPR 2 6 2 3 4 6 2

XOR reg, #data16 Bitwise XOR immediate word data with direct
register 2 8 4 6 8 12 4

XOR reg, mem Bitwise XOR direct word memory with direct
register 2 8 4 6 8 12 4

XOR mem, reg Bitwise XOR direct word register with direct
memory 2 8 4 6 8 12 4

XORB Rb, Rb Bitwise XOR direct byte GPR with direct GPR 2 6 2 3 4 6 2

XORB Rb, [Rw] BitwiseXORindirectbytememorywithdirect GPR 2 6 2 3 4 6 2

XORB Rb, [Rw +] Bitwise XOR indirect byte memory with direct
GPR and post-increment source pointer by 1 2 6 2 3 4 6 2

XORB Rb, #data3 Bitwise XORimmediate bytedata with direct GPR 2 6 2 3 4 6 2

XORB reg, #data16 Bitwise XOR immediate byte data with direct
register 2 8 4 6 8 12 4

XORB reg, mem BitwiseXORdirectbytememorywithdirect register 2 8 4 6 8 12 4

XORB mem, reg BitwiseXORdirectbyteregisterwithdirectmemory 2 8 4 6 8 12 4

Boolean Bit Manipulation Operations

BCLR bitaddr Clear direct bit 2 6 2 3 4 6 2

BSET bitaddr Set direct bit 2 6 2 3 4 6 2

BMOV
bitaddr, bitaddr

Move direct bit to direct bit 2 8 4 6 8 12 4

BMOVN
bitaddr, bitaddr

Move negated direct bit to direct bit 2 8 4 6 8 12 4

BAND
bitaddr, bitaddr

AND direct bit with direct bit 2 8 4 6 8 12 4

BOR
bitaddr, bitaddr

OR direct bit with direct bit 2 8 4 6 8 12 4

BXOR
bitaddr, bitaddr

XOR direct bit with direct bit 2 8 4 6 8 12 4

Mnemonic Description
Int.

ROM
Int.

RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Instruction Set Summary (cont’d)

ST10 Programming Manual

24/124

Boolean Bit Manipulation Operations (Cont’d)

BCMP
bitaddr, bitaddr

Compare direct bit to direct bit 2 8 4 6 8 12 4

BFLDH
bitoff,#mask8,#data8

Bitwise modify masked high byte of bit-address-
able direct word memory with immediate data 2 8 4 6 8 12 4

BFLDL
bitoff, #mask8, #data8

Bitwise modify masked low byte of bit-address-
able direct word memory with immediate data 2 8 4 6 8 12 4

CMP Rw, Rw Compare direct word GPR to direct GPR 2 6 2 3 4 6 2

CMP Rw, [Rw] Compare indirect word memory to direct GPR 2 6 2 3 4 6 2

CMP Rw, [Rw +] Compare indirect word memory to direct GPR
and post-increment source pointer by 2 2 6 2 3 4 6 2

CMP Rw, #data3 Compare immediate word data to direct GPR 2 6 2 3 4 6 2

CMP reg, #data16 Compare immediate word data to direct register 2 8 4 6 8 12 4

CMP reg, mem Compare direct word memory to direct register 2 8 4 6 8 12 4

CMPB Rb, Rb Compare direct byte GPR to direct GPR 2 6 2 3 4 6 2

CMPB Rb, [Rw] Compare indirect byte memory to direct GPR 2 6 2 3 4 6 2

CMPB Rb, [Rw +] Compare indirect byte memory to direct GPR
and post-increment source pointer by 1 2 6 2 3 4 6 2

CMPB Rb, #data3 Compare immediate byte data to direct GPR 2 6 2 3 4 6 2

CMPB reg, #data16 Compare immediate byte data to direct register 2 8 4 6 8 12 4

CMPB reg, mem Compare direct byte memory to direct register 2 8 4 6 8 12 4

Compare and Loop Control Instructions

CMPD1 Rw, #data4 Compare immediate word data to direct GPR
and decrement GPR by 1 2 6 2 3 4 6 2

CMPD1Rw, #data16 Compare immediate word data to direct GPR
and decrement GPR by 1 2 8 4 6 8 12 4

CMPD1 Rw, mem Compare direct word memory to direct GPR
and decrement GPR by 1 2 8 4 6 8 12 4

CMPD2
Rw, #data4

Compare immediate word data to direct GPR
and decrement GPR by 2 2 6 2 3 4 6 2

CMPD2
Rw, #data16

Compare immediate word data to direct GPR
and decrement GPR by 2 2 8 4 6 8 12 4

CMPD2 Rw, mem Compare direct word memory to direct GPR
and decrement GPR by 2 2 8 4 6 8 12 4

CMPI1 Rw, #data4 Compare immediate word data to direct GPR
and increment GPR by 1 2 6 2 3 4 6 2

CMPI1 Rw, #data16 Compare immediate word data to direct GPR
and increment GPR by 1 2 8 4 6 8 12 4

CMPI1 Rw, mem Compare direct word memory to direct GPR
and increment GPR by 1 2 8 4 6 8 12 4

CMPI2 Rw, #data4 Compare immediate word data to direct GPR
and increment GPR by 2 2 6 2 3 4 6 2

Mnemonic Description
Int.

ROM
Int.

RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Instruction Set Summary (cont’d)

ST10 Programming Manual

25/124

Compare and Loop Control Instructions (Cont’d)

CMPI2 Rw, #data16 Compare immediate word data to direct GPR
and increment GPR by 2 2 8 4 6 8 12 4

CMPI2 Rw, mem Compare direct word memory to direct GPR
and increment GPR by 2 2 8 4 6 8 12 4

Prioritize Instruction

PRIOR Rw, Rw Determine number of shift cycles to normalize di-
rect word GPRand storeresult in direct word GPR 2 6 2 3 4 6 2

Shift and Rotate Instructions

SHL Rw, Rw Shift left direct word GPR; number of shift cy-
cles specified by direct GPR 2 6 2 3 4 6 2

SHL Rw, #data4 Shift left direct word GPR; number of shift cy-
cles specified by immediate data 2 6 2 3 4 6 2

SHR Rw, Rw Shift right direct word GPR; number of shift cy-
cles specified by direct GPR 2 6 2 3 4 6 2

SHR Rw, #data4 Shift right direct word GPR; number of shift cy-
cles specified by immediate data 2 6 2 3 4 6 2

ROL Rw, Rw Rotate left direct word GPR; number of shift cy-
cles specified by direct GPR 2 6 2 3 4 6 2

ROL Rw, #data4 Rotate left direct word GPR; number of shift cy-
cles specified by immediate data 2 6 2 3 4 6 2

ROR Rw, Rw Rotate right direct word GPR; number of shift
cycles specified by direct GPR 2 6 2 3 4 6 2

ROR Rw, #data4 Rotate right direct word GPR; number of shift
cycles specified by immediate data 2 6 2 3 4 6 2

ASHR Rw, Rw Arithmetic (sign bit) shift right direct word GPR;
number of shift cycles specified by direct GPR 2 6 2 3 4 6 2

ASHR Rw, #data4 Arithmetic (sign bit) shift right direct word GPR;
number ofshiftcycles specifiedby immediate data 2 6 2 3 4 6 2

Data Movement

MOV Rw, Rw Move direct word GPR to direct GPR 2 6 2 3 4 6 2

MOV Rw, #data4 Move immediate word data to direct GPR 2 6 2 3 4 6 2

MOV reg, #data16 Move immediate word data to direct register 2 8 4 6 8 12 4

MOV Rw, [Rw] Move indirect word memory to direct GPR 2 6 2 3 4 6 2

MOV Rw, [Rw +] Move indirect word memory to direct GPR and
post-increment source pointer by 2 2 6 2 3 4 6 2

MOV [Rw], Rw Move direct word GPR to indirect memory 2 6 2 3 4 6 2

MOV [-RW], Rw Pre-decrement destination pointer by 2 and
move direct word GPR to indirect memory 2 6 2 3 4 6 2

MOV [RW], [RW] Move indirect word memory to indirect memory 2 6 2 3 4 6 2

MOV [Rw +], [Rw] Move indirect word memory to indirect memory
and post-increment destination pointer by 2 2 6 2 3 4 6 2

Mnemonic Description
Int.

ROM
Int.

RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Instruction Set Summary (cont’d)

ST10 Programming Manual

26/124

Data Movement (cont’d)

MOV [Rw], [Rw +] Move indirect word memory to indirect memory
and post-increment source pointer by 2 2 6 2 3 4 6 2

MOV
Rw, [Rw + #data16]

Move indirect word memory by base plus con-
stant to direct GPR 4 10 6 8 10 14 4

MOV
[Rw+#data16], Rw

Move direct word GPR to indirect memory by
base plus constant 2 8 4 6 8 12 4

MOV [Rw], mem Move direct word memory to indirect memory 2 8 4 6 8 12 4

MOV mem, [Rw] Move indirect word memory to direct memory 2 8 4 6 8 12 4

MOV reg, mem Move direct word memory to direct register 2 8 4 6 8 12 4

MOV mem, reg Move direct word register to direct memory 2 8 4 6 8 12 4

MOVB Rb, Rb Move direct byte GPR to direct GPR 2 6 2 3 4 6 2

MOVB Rb, #data4 Move immediate byte data to direct GPR 2 6 2 3 4 6 2

MOVB reg, #data16 Move immediate byte data to direct register 2 8 4 6 8 12 4

MOVB Rb, [Rw] Move indirect byte memory to direct GPR 2 6 2 3 4 6 2

MOVB Rb, [Rw +] Move indirect byte memory to direct GPR and
post-increment source pointer by 1 2 6 2 3 4 6 2

MOVB [Rw], Rb Move direct byte GPR to indirect memory 2 6 2 3 4 6 2

MOVB [-Rw], Rb Pre-decrement destination pointer by 1 and
move direct byte GPR to indirect memory 2 6 2 3 4 6 2

MOVB [Rw], [Rw] Move indirect byte memory to indirect memory 2 6 2 3 4 6 2

MOVB [Rw +], [Rw] Move indirect byte memory to indirect memory
and post-increment destination pointer by 1 2 6 2 3 4 6 2

MOVB [Rw], [Rw +] Move indirect byte memory to indirect memory
and post-increment source pointer by 1 2 6 2 3 4 6 2

MOVB
Rb, [Rw + #data16]

Move indirect byte memory by base plus con-
stant to direct GPR 4 10 6 8 10 14 4

MOVB
[Rw + #data16], Rb

Move direct byte GPR to indirect memory by
base plus constant 2 8 4 6 8 12 4

MOVB [Rw], mem Move direct byte memory to indirect memory 2 8 4 6 8 12 4

MOVB mem, [Rw] Move indirect byte memory to direct memory 2 8 4 6 8 12 4

MOVB reg, mem Move direct byte memory to direct register 2 8 4 6 8 12 4

MOVB mem, reg Move direct byte register to direct memory 2 8 4 6 8 12 4

MOVBS Rw, Rb Move direct byte GPR with sign extension to di-
rect word GPR 2 6 2 3 4 6 2

MOVBS reg, mem Move direct byte memory with sign extension to
direct word register 2 8 4 6 8 12 4

MOVBS mem, reg Move direct byte register with sign extension to
direct word memory 2 8 4 6 8 12 4

MOVBZ Rw, Rb Move direct byte GPR with zero extension to di-
rect word GPR 2 6 2 3 4 6 2

Mnemonic Description
Int.

ROM
Int.

RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Instruction Set Summary (cont’d)

ST10 Programming Manual

27/124

Data Movement (cont’d)

MOVBZ reg, mem Move direct byte memory with zero extension to
direct word register 2 8 4 6 8 12 4

MOVBZ mem, reg Move direct byte register with zero extension to
direct word memory 2 8 4 6 8 12 4

Jump and Call Operations

JMPA cc, caddr Jump absolute if condition is met 4/2 10/8 6/4 8/6 10/8 14/12 4

JMPI cc, [Rw] Jump indirect if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

JMPR cc, rel Jump relative if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

JMPS seg, caddr Jump absolute to a code segment 4 10 6 8 10 14 4

Jump and Call Operations (Cont’d)

JB bitaddr, rel Jump relative if direct bit is set 4 10 6 8 10 14 4

JBC bitaddr, rel Jump relative and clear bit if direct bit is set 4 10 6 8 10 14 4

JNB bitaddr, rel Jump relative if direct bit is not set 4 10 6 8 10 14 4

JNBS bitaddr, rel Jump relative and set bit if direct bit is not set 4 10 6 8 10 14 4

CALLA cc, caddr Call absolute subroutine if condition is met 4/2 10/8 6/4 8/6 10/8 14/12 4

CALLI cc, [Rw] Call indirect subroutine if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

CALLR rel Call relative subroutine 4 8 4 5 6 8 2

CALLS seg, caddr Call absolute subroutine in any code segment 4 10 6 8 10 14 4

PCALL reg, caddr Push direct word register onto system stack and
call absolute subroutine 4 10 6 8 10 14 4

TRAP #trap7 Call interrupt service routine via immediate trap
number 4 8 4 5 6 8 2

System Stack Operations

POP reg Pop direct word register from system stack 2 6 2 3 4 6 2

PUSH reg Push direct word register onto system stack 2 6 2 3 4 6 2

SCXT reg, #data16 Push direct word register onto system stack und
update register with immediate data 2 8 4 6 8 12 4

SCXT reg, mem Push direct word register onto system stack und
update register with direct memory 2 8 4 6 8 12 4

Return Operations

RET Return from intra-segment subroutine 4 8 4 5 6 8 2

RETS Return from inter-segment subroutine 4 8 4 5 6 8 2

RETP reg Return from intra-segment subroutine and pop
direct word register from system stack 4 8 4 5 6 8 2

RETI Return from interrupt service subroutine 4 8 4 5 6 8 2

Mnemonic Description
Int.

ROM
Int.

RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Instruction Set Summary (cont’d)

ST10 Programming Manual

28/124

*) The EXTended instructions are not available in the ST10X166 devices.

System Control

SRST Software Reset 2 8 4 6 8 12 4

IDLE Enter Idle Mode 2 8 4 6 8 12 4

PWRDN Enter Power Down Mode (supposes NMI-pin
being low) 2 8 4 6 8 12 4

SRVWDT Service Watchdog Timer 2 8 4 6 8 12 4

DISWDT Disable Watchdog Timer 2 8 4 6 8 12 4

EINIT Signify End-of-Initialization on RSTOUT-pin 2 8 4 6 8 12 4

ATOMIC #data2 Begin ATOMIC sequence *) 2 6 2 3 4 6 2

EXTR #data2 Begin EXTended Register sequence *) 2 6 2 3 4 6 2

EXTP Rw, #data2 Begin EXTended Page sequence*) 2 6 2 3 4 6 2

EXTP
#pag10, #data2

Begin EXTended Page sequence*)
2 8 4 6 8 12 4

EXTPR Rw, #data2 Begin EXTended Page and Register sequence *) 2 6 2 3 4 6 2

System Control

EXTPR
#pag10, #data2

Begin EXTended Page and Register sequence *)
2 8 4 6 8 12 4

EXTS Rw, #data2 Begin EXTended Segment sequence*) 2 6 2 3 4 6 2

EXTS
#seg8, #data2

Begin EXTended Segment sequence*)
2 8 4 6 8 12 4

EXTSR
Rw, #data2

Begin EXTended Segment and Register se-
quence *) 2 6 2 3 4 6 2

EXTSR
#seg8, #data2

Begin EXTended Segment and Register se-
quence *) 2 8 4 6 8 12 4

Miscellaneous

NOP Null operation 2 6 2 3 4 6 2

Mnemonic Description
Int.

ROM
Int.

RAM

16-bit
Non
-Mux

16-bit
Mux

8-bit
Non
-Mux

8-bit
Mux

Bytes

Instruction Set Summary (cont’d)

ST10 Programming Manual

29/124

2.3 Instruction Opcodes

The following pages list the instructions of the 16-bit microcontrollers ordered by their hexadecimal op-
codes. This helps to identify specific instructions when reading executable code, ie. during the debugging
phase.

Notes for Opcode Lists
1) These instructions are encoded by means of additional bits in the operand field of the instruction

x0h – x7h: Rw, #data3 or Rb, #data3
x8h – xBh: Rw, [Rw] or Rb, [Rw]
xCh – xFh: Rw, [Rw +] or Rb, [Rw +]

For these instructions only the lowest four GPRs, R0 to R3, can be used as indirect address pointers.

2) These instructions are encoded by means of additional bits in the operand field of the instruction
00xx.xxxx: EXTS or ATOMIC
01xx.xxxx: EXTP
10xx.xxxx: EXTSR or EXTR
11xx.xxxx: EXTPR

The ATOMIC and EXTended instructions are not available in the ST10X166 devices.

Notes on the JMPR Instructions
The condition code to be tested for the JMPR instructions is specified by the opcode.
Two mnemonic representation alternatives exist for some of the condition codes.
Notes on the BCLR and BSET Instructions
The position of the bit to be set or to be cleared is specified by the opcode. The operand ‘bitoff.n’ (n = 0
to 15) refers to a particular bit within a bit-addressable word.

Notes on the Undefined Opcodes
A hardware trap occurs when one of the undefined opcodes signified by ‘----’ is decoded by the CPU.

ST10 Programming Manual

30/124

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

00 2 ADD Rw, Rw 20 2 SUB Rw, Rw

01 2 ADDB Rb, Rb 21 2 SUBB Rb, Rb

02 4 ADD reg, mem 22 4 SUB reg, mem

03 4 ADDB reg, mem 23 4 SUBB reg, mem

04 4 ADD mem, reg 24 4 SUB mem, reg

05 4 ADDB mem, reg 25 4 SUBB mem, reg

06 4 ADD reg, #data16 26 4 SUB reg, #data16

07 4 ADDB reg, #data8 27 4 SUBB reg, #data8

08 2 ADD Rw, [Rw +] or
Rw, [Rw] or

Rw, #data3 1)

28 2 SUB Rw, [Rw +] or
Rw, [Rw] or

Rw, #data3 1)

09 2 ADDB Rb, [Rw +] or
Rb, [Rw] or

Rb, #data3 1)

29 2 SUBB Rb, [Rw +] or
Rb, [Rw] or

Rb, #data3 1)

0A 4 BFLDL bitoff, #mask8,
#data8

2A 4 BCMP bitaddr, bitaddr

0B 2 MUL Rw, Rw 2B 2 PRIOR Rw, Rw

0C 2 ROL Rw, Rw 2C 2 ROR Rw, Rw

0D 2 JMPR cc_UC, rel 2D 2 JMPR cc_EQ, rel or
cc_Z, rel

0E 2 BCLR bitoff.0 2E 2 BCLR bitoff.2

0F 2 BSET bitoff.0 2F 2 BSET bitoff.2

10 2 ADDC Rw, Rw 30 2 SUBC Rw, Rw

11 2 ADDCB Rb, Rb 31 2 SUBCB Rb, Rb

12 4 ADDC reg, mem 32 4 SUBC reg, mem

13 4 ADDCB reg, mem 33 4 SUBCB reg, mem

14 4 ADDC mem, reg 34 4 SUBC mem, reg

15 4 ADDCB mem, reg 35 4 SUBCB mem, reg

16 4 ADDC reg, #data16 36 4 SUBC reg, #data16

17 4 ADDCB reg, #data8 37 4 SUBCB reg, #data8

Instruction Opcodes (cont’d)

ST10 Programming Manual

31/124

18 2 ADDC Rw, [Rw +] or
Rw, [Rw] or

Rw, #data3 1)

38 2 SUBC Rw, [Rw +] or
Rw, [Rw] or

Rw, #data3 1)

19 2 ADDCB Rb, [Rw +] or
Rb, [Rw] or

Rb, #data3 1)

39 2 SUBCB Rb, [Rw +] or
Rb, [Rw] or

Rb, #data3 1)

1A 4 BFLDH bitoff, #mask8,
#data8

3A 4 BMOVN bitaddr, bitaddr

1B 2 MULU Rw, Rw 3B - - -

1C 2 ROL Rw, #data4 3C 2 ROR Rw, #data4

1D 2 JMPR cc_NET, rel 3D 2 JMPR cc_NE, rel or
cc_NZ, rel

1E 2 BCLR bitoff.1 3E 2 BCLR bitoff.3

1F 2 BSET bitoff.1 3F 2 BSET bitoff.3

40 2 CMP Rw, Rw 60 2 AND Rw, Rw

41 2 CMPB Rb, Rb 61 2 ANDB Rb, Rb

42 4 CMP reg, mem 62 4 AND reg, mem

43 4 CMPB reg, mem 63 4 ANDB reg, mem

44 - - - 64 4 AND mem, reg

45 - - - 65 4 ANDB mem, reg

46 4 CMP reg, #data16 66 4 AND reg, #data16

47 4 CMPB reg, #data8 67 4 ANDB reg, #data8

48 2 CMP Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

68 2 AND Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

49 2 CMPB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

69 2 ANDB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

4A 4 BMOV bitaddr, bitaddr 6A 4 BAND bitaddr, bitaddr

4B 2 DIV Rw 6B 2 DIVL Rw

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

Instruction Opcodes (cont’d)

ST10 Programming Manual

32/124

4C 2 SHL Rw, Rw 6C 2 SHR Rw, Rw

4D 2 JMPR cc_V, rel 6D 2 JMPR cc_N, rel

4E 2 BCLR bitoff.4 6E 2 BCLR bitoff.6

4F 2 BSET bitoff.4 6F 2 BSET bitoff.6

50 2 XOR Rw, Rw 70 2 OR Rw, Rw

51 2 XORB Rb, Rb 71 2 ORB Rb, Rb

52 4 XOR reg, mem 72 4 OR reg, mem

53 4 XORB reg, mem 73 4 ORB reg, mem

54 4 XOR mem, reg 74 4 OR mem, reg

55 4 XORB mem, reg 75 4 ORB mem, reg

56 4 XOR reg, #data16 76 4 OR reg, #data16

57 4 XORB reg, #data8 77 4 ORB reg, #data8

58 2 XOR Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

78 2 OR Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

59 2 XORB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

79 2 ORB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

5A 4 BOR bitaddr, bitaddr 7A 4 BXOR bitaddr, bitaddr

5B 2 DIVU Rw 7B 2 DIVLU Rw

5C 2 SHL Rw, #data4 7C 2 SHR Rw, #data4

5D 2 JMPR cc_NV, rel 7D 2 JMPR cc_NN, rel

5E 2 BCLR bitoff.5 7E 2 BCLR bitoff.7

5F 2 BSET bitoff.5 7F 2 BSET bitoff.7

80 2 CMPI1 Rw, #data4 A0 2 CMPD1 Rw, #data4

81 2 NEG Rw A1 2 NEGB Rb

82 4 CMPI1 Rw, mem A2 4 CMPD1 Rw, mem

83 - - - A3 - - -

84 4 MOV [Rw], mem A4 4 MOVB [Rw], mem

85 - - - A5 4 DISWDT

86 4 CMPI1 Rw, #data16 A6 4 CMPD1 Rw, #data16

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

Instruction Opcodes (cont’d)

ST10 Programming Manual

33/124

87 4 IDLE A7 4 SRVWDT

88 2 MOV [-Rw], Rw A8 2 MOV Rw, [Rw]

89 2 MOVB [-Rw], Rb A9 2 MOVB Rb, [Rw]

8A 4 JB bitaddr, rel AA 4 JBC bitaddr, rel

8B - - - AB 2 CALLI cc, [Rw]

8C - - - AC 2 ASHR Rw, Rw

8D 2 JMPR cc_C, rel or
cc_ULT, rel

AD 2 JMPR cc_SGT, rel

8E 2 BCLR bitoff.8 AE 2 BCLR bitoff.10

8F 2 BSET bitoff.8 AF 2 BSET bitoff.10

90 2 CMPI2 Rw, #data4 B0 2 CMPD2 Rw, #data4

91 2 CPL Rw B1 2 CPLB Rb

92 4 CMPI2 Rw, mem B2 4 CMPD2 Rw, mem

93 - - - B3 - - -

94 4 MOV mem, [Rw] B4 4 MOVB mem, [Rw]

95 - - - B5 4 EINIT

96 4 CMPI2 Rw, #data16 B6 4 CMPD2 Rw, #data16

97 4 PWRDN B7 4 SRST

98 2 MOV Rw, [Rw+] B8 2 MOV [Rw], Rw

99 2 MOVB Rb, [Rw+] B9 2 MOVB [Rw], Rb

9A 4 JNB bitaddr, rel BA 4 JNBS bitaddr, rel

9B 2 TRAP #trap7 BB 2 CALLR rel

9C 2 JMPI cc, [Rw] BC 2 ASHR Rw, #data4

9D 2 JMPR cc_NC, rel or
cc_UGE, rel

BD 2 JMPR cc_SLE, rel

9E 2 BCLR bitoff.9 BE 2 BCLR bitoff.11

9F 2 BSET bitoff.9 BF 2 BSET bitoff.11

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

Instruction Opcodes (cont’d)

ST10 Programming Manual

34/124

Notes:

ST10 Programming Manual

35/124

3 INSTRUCTION SET

Instruction Description

This chapter describes each instruction in detail. The instructions are ordered alphabetically, and the de-
scription contains the following elements:

•Instruction Name • Specifies the mnemonic opcode of the instruction in oversized bold lettering for easy
reference. The mnemonics have been chosen with regard to the particular operation which is performed
by the specified instruction.

•Syntax • Specifies the mnemonic opcode and the required formal operands of the instruction as used in
the following subsection ’Operation’. There are instructions with either none, one, two or three operands,
which must be separated from each other by commas:

MNEMONIC {op1 {,op2 {,op3 } } }
The syntax for the actual operands of an instruction depends on the selected addressing mode. All of the
addressing modes available are summarized at the end of each single instruction description. In contrast
to the syntax for the instructions described in the following, the assembler provides much more flexibility
in writing ST10R165 programs (e.g. by generic instructions and by automatically selecting appropriate ad-
dressing modes whenever possible), and thus it eases the use of the instruction set. For more information
about this item please refer to the Assembler manual.

•Operation • This part presents a logical description of the operation performed by an instruction by means
of a symbolic formula or a high level language construct.
The following symbols are used to represent data movement, arithmetic or logical operators.

Diadic operations: (opX) operator (opY)

← (opY) is MOVED into (opX)

+ (opX) is ADDED to (opY)

- (opY) is SUBTRACTED from (opX)

* (opX) is MULTIPLIED by (opY)

/ (opX) is DIVIDED by (opY)

∧ (opX) is logically ANDed with (opY)

∨ (opX) is logically ORed with (opY)

⊕ (opX) is logically EXCLUSIVELY ORed with (opY)

⇔ (opX) is COMPARED against (opY)

mod (opX) is divided MODULO (opY)

Monadic operations: operator (opX)
¬ (opX) is logically COMPLEMENTED

ST10 Programming Manual

36/124

Missing or existing parentheses signify whether the used operand specifies an immediate constant value,
an address or a pointer to an address as follows:

opX Specifies the immediate constant value of opX

(opX) Specifies the contents of opX

(opXn) Specifies the contents of bit n of opX

((opX)) Specifies the contents of the contents of opX
(ie. opX is used as pointer to the actual operand)

The following operands will also be used in the operational description:

CP Context Pointer register

CSP Code Segment Pointer register

IP Instruction Pointer

MD Multiply/Divide register
(32 bits wide, consists of MDH and MDL)

MDL, MDH Multiply/Divide Low and High registers (each 16 bit wide)

PSW Program Status Word register

SP System Stack Pointer register

SYSCON System Configuration register

C Carry condition flag in the PSW register

V Overflow condition flag in the PSW register

SGTDIS Segmentation Disable bit in the SYSCON register

count Temporary variable for an intermediate storage of
the number of shift or rotate cycles which remain
to complete the shift or rotate operation

tmp Temporary variable for an intermediate result

0, 1, 2,... Constant values due to the data format
of the specified operation

•Data Types • This part specifies the particular data type according to the instruction. Basically, the follow-
ing data types are possible:
BIT, BYTE, WORD, DOUBLEWORD

Except for those instructions which extend byte data to word data, all instructions have only one particular
data type. Note that the data types mentioned in this subsection do not consider accesses to indirect ad-
dress pointers or to the system stack which are always performed with word data. Moreover, no data type
is specified for System Control Instructions and for those of the branch instructions which do not access
any explicitly addressed data.

INSTRUCTION SET (cont’d)

ST10 Programming Manual

37/124

•Description • This part provides a brief verbal description of the action that is executed by the respec-
tive instruction.

•Condition Code • This notifies that the respective instruction contains a condition code, so it is execut-
ed, if the specified condition is true, and is skipped, if it is false. The table below summarizes the 16 pos-
sible condition codes that can be used within Call and Branch instructions. The table shows the mne-
monic abbreviations, the test that is executed for a specific condition and the internal representation by
a 4-bit number.

•Condition Flags • This part reflects the state of the N, C, V, Z and E flags in the PSW register which is
the state after execution of the corresponding instruction, except if the PSW register itself was specified
as the destination operand of that instruction (see Note).

The resulting state of the flags is represented by symbols as follows:

Condition Code
Mnemonic cc

Test Description
Condition Code
Number c

cc_UC 1 = 1 Unconditional 0h

cc_Z Z = 1 Zero 2h

cc_NZ Z = 0 Not zero 3h

cc_V V = 1 Overflow 4h

cc_NV V = 0 No overflow 5h

cc_N N = 1 Negative 6h

cc_NN N = 1 Not negative 7h

cc_C C = 1 Carry 8h

cc_NC C = 0 No carry 9h

cc_EQ Z = 1 Equal 2h

cc_NE Z = 0 Not equal 3h

cc_ULT C = 1 Unsigned less than 8h

cc_ULE (Z∨ C) = 1 Unsigned less than or equal Fh

cc_UGE C = 0 Unsigned greater than or equal 9h

cc_UGT (Z∨ C) = 0 Unsigned greater than Eh

cc_SLT (N⊕ V) = 1 Signed less than Ch

cc_SLE (Z∨ (N⊕ V)) = 1 Signed less than or equal Bh

cc_SGE (N⊕ V) = 0 Signed greater than or equal Dh

cc_SGT (Z∨ (N⊕ V)) = 0 Signed greater than Ah

cc_NET (Z∨ E) = 0 Not equal AND not end of table 1h

INSTRUCTION SET (cont’d)

ST10 Programming Manual

38/124

’*’ The flag is set due to the following standard rules for the corresponding flag:

N = 1 : MSB of the result is set

N = 0 : MSB of the result is not set

C = 1 : Carry occured during operation

C = 0 : No Carry occured during operation

V = 1 : Arithmetic Overflow occured during operation

V = 0 : No Arithmetic Overflow occured during operation

Z = 1 : Result equals zero

Z = 0 : Result does not equal zero

E = 1 : Source operand represents the lowest negative number
(either 8000h for word data or 80h for byte data)

E = 0 : Source operand does not represent the lowest negative
number for the specified data type

’S’ The flag is set due to rules which deviate from the described standard.
For more details see instruction pages (below) or the ALU status flags description.

’-’ The flag is not affected by the operation.

’0’ The flag is cleared by the operation.

’NOR’ The flag contains the logical NORing of the two specified bit operands.

’AND’ The flag contains the logical ANDing of the two specified bit operands.

’OR’ The flag contains the logical ORing of the two specified bit operands.

’XOR’ The flag contains the logical XORing of the two specified bit operands.

’B’ The flag contains the original value of the specified bit operand.

’B’ The flag contains the complemented value of the specified bit operand.

Note: If the PSW register was specified as the destination operand of an instruction, the condition flags
can not be interpreted as just described, because the PSW register is modified depending on the
data format of the instruction as follows:
For word operations, the PSW register is overwritten with the word result. For byte operations, the
non-addressed byte is cleared and the addressed byte is overwritten. For bit or bit-field operations
on the PSW register, only the specified bits are modified. Supposed that the condition flags were
not selected as destination bits, they stay unchanged. This means that they keep the state after
execution of the previous instruction.
In any case, if the PSW was the destination operand of an instruction, the PSW flags do NOT rep-
resent the condition flags of this instruction as usual.

•Addressing Modes • This part specifies which combinations of different addressing modes are availa-
ble for the required operands. Mostly, the selected addressing mode combination is specified by the op-
code of the corresponding instruction. However, there are some arithmetic and logical instructions
where the addressing mode combination is not specified by the (identical) opcodes but by particular bits
within the operand field.
The addressing mode entries are made up of three elements:

INSTRUCTION SET (cont’d)

ST10 Programming Manual

39/124

Mnemonic Shows an example of what operands the respective instruction will accept.
Format This part specifies the format of the instructions as it is represented in the assembler listing. The
figure below shows the reference between the instruction format representation of the assembler and the
corresponding internal organization of such an instruction format (N = nibble = 4 bits).
The following symbols are used to describe the instruction formats:
00h through FFh: Instruction Opcodes

0, 1 : Constant Values

:.... : Each of the 4 characters immediately following a colon represents a single bit

:..ii : 2-bit short GPR address (Rwi)

ss : 8-bit code segment number (seg).

:..## : 2-bit immediate constant (#data2)

:.### : 3-bit immediate constant (#data3)

c : 4-bit condition code specification (cc)

n : 4-bit short GPR address (Rwn or Rbn)

m : 4-bit short GPR address (Rwm or Rbm)

q : 4-bit position of the source bit within the word specified by QQ

z : 4-bit position of the destination bit within the word specified by ZZ

: 4-bit immediate constant (#data4)

QQ : 8-bit word address of the source bit (bitoff)

rr : 8-bit relative target address word offset (rel)

RR : 8-bit word address reg

ZZ : 8-bit word address of the destination bit (bitoff)

: 8-bit immediate constant (#data8)

@@ : 8-bit immediate constant (#mask8)

pp 0:00pp :10-bit page address (#pag10)

MM MM: 16-bit address (mem or caddr; low byte, high byte)

: 16-bit immediate constant (#data16; low byte, high byte)

Number of Bytes Specifies the size of an instruction in bytes. All ST10 instructions consist of either 2 or
4 bytes. Regarding the instruction size, all instructions can be classified as either single word or double
word instructions.

INSTRUCTION SET (cont’d)

ST10 Programming Manual

40/124

Figure 3. Instruction Format Representation

Notes on the ATOMIC and EXTended Instructions
These instructions (ATOMIC, EXTR, EXTP, EXTS, EXTPR, EXTSR) disable standard and PEC inter-
rupts and class A traps during a sequence of the following 1...4 instructions. The length of the sequence
is determined by an operand (op1 or op2, depending on the instruction). The EXTended instruction ad-
ditionally change the addressing mechanism during this sequence (see detailled instruction description).
The ATOMIC and EXTended instructions become active immediately, so no additional NOPs are re-
quired. All instructions requiring multiple cycles or hold states to be executed are regarded as one in-
struction in this sense. Any instruction type can be used with the ATOMIC and EXTended instructions.

CAUTION: When a Class B trap interupts an ATOMIC or EXTended sequence, this sequence is termi-
nated, the interrupt lock is removed and the standard condition is restored, before the trap routine is ex-
ecuted! The remaining instructions of the terminated sequence that are executed after returning from the
trap routine will run under standard conditions!
CAUTION: Be careful, when using the ATOMIC and EXTended instructions with other system control or
branch instructions.
CAUTION: Be careful, when using nested ATOMIC and EXTended instructions. There is ONE counter
to control the length of such a sequence, ie. issuing an ATOMIC or EXTended instruction within a se-
quence will reload the counter with value of the new instruction.

Note: The ATOMIC and EXTended instructions are not available in the ST10X166 devices.

The following pages of this section contain a detailled description of each instruction of the ST10 in al-
phabetical order.

Bits in ascending order LSBMSB

Representation in the
Assembler Listing:

N2N1 N4N3 N6N5 N8N7

High Byte 2nd word

Low Byte 2nd word

High Byte 1st word

Low Byte 1st word

Internal Organization:

N8 N7 N6 N5 N4 N3 N2 N1

INSTRUCTION SET (cont’d)

ST10 Programming Manual

41/124

ADD Integer Addition ADD
Syntax ADD op1, op2

Operation (op1) ← (op1) + (op2)

Data Types WORD

Description Performs a 2’s complement binary addition of the source operand specified by
op2 and the destination operand specified by op1. The sum is then stored in
op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified

data type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADD Rwn, Rwm 00 nm 2

ADD Rwn, [Rwi] 08 n:10ii 2

ADD Rwn, [Rwi+] 08 n:11ii 2

ADD Rwn, #data3 08 n:0### 2

ADD reg, #data16 06 RR ## ## 4

ADD reg, mem 02 RR MM MM 4

ADD mem, reg 04 RR MM MM 4

Condition Flags E Z V C N

* * * * *

ST10 Programming Manual

42/124

ADDB Integer Addition ADDB
Syntax ADDB op1, op2

Operation (op1) ← (op1) + (op2)

Data Types BYTE

Description Performs a 2’s complement binary addition of the source operand specified by
op2 and the destination operand specified by op1. The sum is then stored in
op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified

data type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADDB Rbn, Rbm 01 nm 2

ADDB Rbn, [Rwi] 09 n:10ii 2

ADDB Rbn, [Rwi+] 09 n:11ii 2

ADDB Rbn, #data3 09 n:0### 2

ADDB reg, #data16 07 RR ## ## 4

ADDB reg, mem 03 RR MM MM 4

ADDB mem, reg 05 RR MM MM 4

Condition Flags E Z V C N

* * * * *

ST10 Programming Manual

43/124

ADDC Integer Addition with Carry ADDC
Syntax ADDC op1, op2

Operation (op1) ← (op1) + (op2) + (C)

Data Types WORD

Description Performs a 2’s complement binary addition of the source operand specified by
op2, the destination operand specified by op1 and the previously generated
carry bit. The sum is then stored in op1. This instruction can be used to perform
multiple precision arithmetic.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared

otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified

data type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADDC Rwn, Rwm 10 nm 2

ADDC Rwn, [Rwi] 18 n:10ii 2

ADDC Rwn, [Rwi+] 18 n:11ii 2

ADDC Rwn, #data3 18 n:0### 2

ADDC reg, #data16 16 RR ## ## 4

ADDC reg, mem 12 RR MM MM 4

ADDC mem, reg 14 RR MM MM 4

Condition Flags E Z V C N

* S * * *

ST10 Programming Manual

44/124

ADDBC Integer Addition with Carry ADDBC
Syntax ADDBC op1, op2

Operation (op1) ← (op1) + (op2) + (C)

Data Types BYTE

Description Performs a 2’s complement binary addition of the source operand specified by
op2, the destination operand specified by op1 and the previously generated
carry bit. The sum is then stored in op1. This instruction can be used to perform
multiple precision arithmetic.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set.. Cleared

otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified

data type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADDCB Rbn, Rbm 11 nm 2

ADDCB Rbn, [Rwi] 19 n:10ii 2

ADDCB Rbn, [Rwi+] 19 n:11ii 2

ADDCB Rbn, #data3 19 n:0### 2

ADDCB reg, #data16 17 RR ## ## 4

ADDCB reg, mem 13 RR MM MM 4

ADDCB mem, reg 15 RR MM MM 4

Condition Flags E Z V C N

* S * * *

ST10 Programming Manual

45/124

AND Logical AND AND
Syntax AND op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types WORD

Description Performs a bitwise logical AND of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

AND Rwn, Rwm 60 nm 2

AND Rwn, [Rwi] 68 n:10ii 2

AND Rwn, [Rwi+] 68 n:11ii 2

AND Rwn, #data3 68 n:0### 2

AND reg, #data16 66 RR ## ## 4

AND reg, mem 62 RR MM MM 4

AND mem, reg 64 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *

ST10 Programming Manual

46/124

ANDB Logical AND ANDB
Syntax ANDB op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types BYTE

Description Performs a bitwise logical AND of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ANDB Rbn, Rbm 61 nm 2

ANDB Rbn, [Rwi] 69 n:10ii 2

ANDB Rbn, [Rwi+] 69 n:11ii 2

ANDB Rbn, #data3 69 n:0### 2

ANDB reg, #data16 67 RR ## ## 4

ANDB reg, mem 63 RR MM MM 4

ANDB mem, reg 65 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *

ST10 Programming Manual

47/124

ASHR Arithmetic Shift Right ASHR
Syntax ASHR op1, op2

Operation (count) ← (op1) ∧ (op2)
(V) ← 0
(C) ← 0
DO WHILE (count) ≠ 0
(V) ← (C) ∨ (V)
(C) ← (op10)
(op1n) ← (op1n+1) [n=0...14]
(count) ← (count) - 1

END WHILE

Data Types WORD

Description Arithmetically shifts the destination word operand op1 right by as many times as
specified in the source operand op2. To preserve the sign of the original
operand op1, the most significant bits of the result are filled with zeros if the
original MSB was a 0 or with ones if the original MSB was a 1. The Overflow flag
is used as a Rounding flag. The LSB is shifted into the Carry. Only shift values
between 0 and 15 are allowed. When using a GPR as the count control, only the
least significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a 1 is shifted out of the carry

flag. Cleared for a shift count of zero.

C The carry flag is set according to the last LSB shifted out of op1.

Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ASHR Rwn, Rwm AC nm 2

ASHR Rwn, #data4 BC #n 2

Condition Flags E Z V C N

0 * S S *

ST10 Programming Manual

48/124

ATOMIC Begin ATOMIC Sequence ATOMIC
Syntax ATOMIC op1

Operation (count) ← (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
Next Instruction
(count) ← (count) - 1

END WHILE
(count) = 0
Enable interrupts and traps

Description Causes standard and PEC interrupts and class A hardware traps to be disabled
for a specified number of instructions. The ATOMIC instruction becomes
immediately active such that no additional NOPs are required.
Depending on the value of op1, the period of validity of the ATOMIC sequence
extends over the sequence of the next 1 to 4 instructions being executed after
the ATOMIC instruction. All instructions requiring multiple cycles or hold states
to be executed are regarded as one instruction in this sense. Any instruction
type can be used with the ATOMIC instruction.

Note The ATOMIC instruction must be used carefully (see introductory note).
The ATOMIC instruction is not available in the ST10X166 devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

ATOMIC #data2 D1 :00##-0 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

49/124

BAND Bit Logical AND BAND
Syntax BAND op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types BIT

Description Performs a single bit logical AND of the source bit specified by op2 and the
destination bit specified by op1. The result is then stored in op1.

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes

BAND bitaddrZ.z, bitaddrQ.q 6A QQ ZZ qz 4

Condition Flags E Z V C N

0 NOR OR AND XOR

ST10 Programming Manual

50/124

BCLR Bit Clear BCLR
Syntax BCLR op1

Operation (op1) ← 0

Data Types BIT

Description CLears the bit specified by op1. This instruction is primarily used for peripheral
and system control.

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes

BCLR bitaddrQ.q qE QQ 2

Condition Flags E Z V C N

0 B 0 0 B

ST10 Programming Manual

51/124

BCMP Bit to Bit Compare BCMP
Syntax BCMP op1, op2

Operation (op1) ⇔ (op2)

Data Types BIT

Description Performs a single bit comparison of the source bit specified by operand op1 to
the source bit specified by operand op2. No result is written by this instruction.
Only the condition codes are updated.

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes

BCMP bitaddrZ.z, bitaddrQ.q 2A QQ ZZ qz 4

Condition Flags E Z V C N

0 NOR OR AND XOR

ST10 Programming Manual

52/124

BFLDH Bit Field High Byte BFLDH
Syntax BFLDH op1, op2, op3

Operation (tmp) ← (op1)
(high byte (tmp)) ← ((high byte (tmp) ∧ ¬ op2) ∨ op3)
(op1) ← (tmp)

Data Types WORD

Description Replaces those bits in the high byte of the destination word operand op1 which
are selected by an ’1’ in the AND mask op2 with the bits at the corresponding
positions in the OR mask specified by op3.

Note Bits which are masked off by a ’0’ in the AND mask op2 may be unintentionally
altered if the corresponding bit in the OR mask op3 contains a ’1’.

E Always cleared.

Z Set if the word result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the word result is set. Cleared

otherwise.

Addressing Modes Mnemonic Format Bytes

BFLDH bitoffQ, #mask8, #data8 1A QQ ## @@ 4

Condition Flags E Z V C N

0 * 0 0 *

ST10 Programming Manual

53/124

BFLDL Bit Field Low Byte BFLDL
Syntax BFLDL op1, op2, op3

Operation (tmp) ← (op1)
(low byte (tmp)) ← ((low byte (tmp) ∧ ¬ op2) ∨ op3)
(op1) ← (tmp)

Data Types WORD

Description Replaces those bits in the low byte of the destination word operand op1 which
are selected by an ’1’ in the AND mask op2 with the bits at the corresponding
positions in the OR mask specified by op3.

Note Bits which are masked off by a ’0’ in the AND mask op2 may be unintentionally
altered if the corresponding bit in the OR mask op3 contains a ’1’.

E Always cleared.

Z Set if the word result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the word result is set. Cleared

otherwise.

Addressing Modes Mnemonic Format Bytes

BFLDL bitoffQ, #mask8, #data8 0A QQ ## @@ 4

Condition Flags E Z V C N

0 * 0 0 *

ST10 Programming Manual

54/124

BMOV Bit to Bit Move BMOV
Syntax BMOV op1, op2

Operation (op1) ← (op2)

Data Types BIT

Description Moves a single bit from the source operand specified by op2 into the destination
operand specified by op1. The source bit is examined and the flags are updated
accordingly.

E Always cleared.

Z Contains the logical negation of the previous state of the source bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the source bit.

Addressing Modes Mnemonic Format Bytes

BMOV bitaddrZ.z, bitaddrQ.q 4A QQ ZZ qz 4

Condition Flags E Z V C N

0 B 0 0 B

ST10 Programming Manual

55/124

BMOVN Bit to Bit Move and Negate BMOVN
Syntax BMOVN op1, op2

Operation (op1) ← ¬ (op2)

Data Types BIT

Description Moves the complement of a single bit from the source operand specified by op2
into the destination operand specified by op1. The source bit is examined and
the flags are updated accordingly.

E Always cleared.

Z Contains the logical negation of the previous state of the source bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the source bit.

Addressing Modes Mnemonic Format Bytes

BMOVN bitaddrZ.z, bitaddrQ.q 3A QQ ZZ qz 4

Condition Flags E Z V C N

0 B 0 0 B

ST10 Programming Manual

56/124

BOR Bit Logical OR BOR
Syntax BOR op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types BIT

Description Performs a single bit logical OR of the source bit specified by operand op2 with
the destination bit specified by operand op1. The ORed result is then stored in
op1.

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes

BOR bitaddrZ.z, bitaddrQ.q 5A QQ ZZ qz 4

Condition Flags E Z V C N

0 NOR OR AND XOR

ST10 Programming Manual

57/124

BSET Bit Set BSET
Syntax BSET op1

Operation (op1) ← 1

Data Types BIT

Description Sets the bit specified by op1. This instruction is primarily used for peripheral and
system control.

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes

BSET bitaddrQ.q qF QQ 2

Condition Flags E Z V C N

0 B 0 0 B

ST10 Programming Manual

58/124

BXOR Bit Logical XOR BXOR
Syntax BXOR op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types BIT

Description Performs a single bit logical EXCLUSIVE OR of the source bit specified by
operand op2 with the destination bit specified by operand op1. The XORed
result is then stored in op1.

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes

BXOR bitaddrZ.z, bitaddrQ.q 7A QQ ZZ qz 4

Condition Flags E Z V C N

0 NOR OR AND XOR

ST10 Programming Manual

59/124

CALLA Call Subroutine Absolute CALLA
Syntax CALLA op1, op2

Operation IF (op1) THEN
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← op2
ELSE
next instruction
END IF

Description If the condition specified by op1 is met, a branch to the absolute memory
location specified by the second operand op2 is taken. The value of the
instruction pointer, IP, is placed onto the system stack. Because the IP always
points to the instruction following the branch instruction, the value stored on the
system stack represents the return address of the calling routine. If the condition
is not met, no action is taken and the next instruction is executed normally.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

CALLA cc, caddr CA c0 MM MM 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

60/124

CALLI Call Subroutine Indirect CALLI
Syntax CALLI op1, op2

Operation IF (op1) THEN
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← (op2)
ELSE
next instruction
END IF

Description If the condition specified by op1 is met, a branch to the location specified
indirectly by the second operand op2 is taken. The value of the instruction
pointer, IP, is placed onto the system stack. Because the IP always points to the
instruction following the branch instruction, the value stored on the system stack
represents the return address of the calling routine. If the condition is not met, no
action is taken and the next instruction is executed normally.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

CALLI cc, [Rwn] AB cn 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

61/124

CALLR Call Subroutine Relative CALLR
Syntax CALLR op1

Operation (SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← (IP) + sign_extend (op1)

Description A branch is taken to the location specified by the instruction pointer, IP, plus the
relative displacement, op1. The displacement is a two’s complement number
which is sign extended and counts the relative distance in words. The value of
the instruction pointer (IP) is placed onto the system stack. Because the IP
always points to the instruction following the branch instruction, the value stored
on the system stack represents the return address of the calling routine. The
value of the IP used in the target address calculation is the address of the
instruction following the CALLR instruction.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

CALLR rel BB rr 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

62/124

CALLS Call Inter-Segment Subroutine CALLS
Syntax CALLS op1, op2

Operation (SP) ← (SP) - 2
((SP)) ← (CSP)
(SP) ← (SP) - 2
((SP)) ← (IP)
(CSP) ← op1
(IP) ← op1

Description A branch is taken to the absolute location specified by op2 within the segment
specified by op1. The value of the instruction pointer (IP) is placed onto the
system stack. Because the IP always points to the instruction following the
branch instruction, the value stored on the system stack represents the return
address to the calling routine. The previous value of the CSP is also placed on
the system stack to insure correct return to the calling segment.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

CALLS seg, caddr DA ss MM MM 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

63/124

CMP Integer Compare CMP
Syntax CMP op1, op2

Operation (op1) ⇔ (op2)

Data Types WORD

Description The source operand specified by op1 is compared to the source operand
specified by op2 by performing a 2’s complement binary subtraction of op2 from
op1. The flags are set according to the rules of subtraction. The operands
remain unchanged.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMP Rwn, Rwm 40 nm 2

CMP Rwn, [Rwi] 48 n:10ii 2

CMP Rwn, [Rwi+] 48 n:11ii 2

CMP Rwn, #data3 48 n:0### 2

CMP reg, #data16 46 RR ## ## 4

CMP reg, mem 42 RR MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

64/124

CMPB Integer Compare CMPB
Syntax CMPB op1, op2

Operation (op1) ⇔ (op2)

Data Types BYTE

Description The source operand specified by op1 is compared to the source operand
specified by op2 by performing a 2’s complement binary subtraction of op2 from
op1. The flags are set according to the rules of subtraction. The operands
remain unchanged.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPB Rbn, Rbm 41 nm 2

CMPB Rbn, [Rwi] 49 n:10ii 2

CMPB Rbn, [Rwi+] 49 n:11ii 2

CMPB Rbn, #data3 49 n:0### 2

CMPB reg, #data16 47 RR ## ## 4

CMPB reg, mem 43 RR MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

65/124

CMPD1 Integer Compare and Decrement by 1 CMPD1
Syntax CMPD1 op1, op2

Operation (op1) ⇔ (op2)
(op1) ← (op1) - 1

Data Types WORD

Description This instruction is used to enhance the performance and flexibility of loops. The
source operand specified by op1 is compared to the source operand specified
by op2 by performing a 2’s complement binary subtraction of op2 from op1.
Operand op1 may specify ONLY GPR registers. Once the subtraction has
completed, the operand op1 is decremented by one. Using the set flags, a
branch instruction can then be used in conjunction with this instruction to form
common high level language FOR loops of any range.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPD1 Rwn, #data4 A0 #n 2

CMPD1 Rwn, #data16 A6 Fn ## ## 4

CMPD1 Rwn, mem A2 Fn MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

66/124

CMPD2 Integer Compare and Decrement by 2 CMPD2
Syntax CMPD2 op1, op2

Operation (op1) ⇔ (op2)
(op1) ← (op1) - 2

Data Types WORD

Description This instruction is used to enhance the performance and flexibility of loops. The
source operand specified by op1 is compared to the source operand specified
by op2 by performing a 2’s complement binary subtraction of op2 from op1.
Operand op1 may specify ONLY GPR registers. Once the subtraction has
completed, the operand op1 is decremented by two. Using the set flags, a
branch instruction can then be used in conjunction with this instruction to form
common high level language FOR loops of any range.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPD2 Rwn, #data4 B0 #n 2

CMPD2 Rwn, #data16 B6 Fn ## ## 4

CMPD2 Rwn, mem B2 Fn MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

67/124

CMPI1 Integer Compare and Increment by 1 CMPI1
Syntax CMPI1 op1, op2

Operation (op1) ⇔ (op2)
(op1) ← (op1) + 1

Data Types WORD

Description This instruction is used to enhance the performance and flexibility of loops. The
source operand specified by op1 is compared to the source operand specified
by op2 by performing a 2’s complement binary subtraction of op2 from op1.
Operand op1 may specify ONLY GPR registers. Once the subtraction has
completed, the operand op1 is incremented by one. Using the set flags, a
branch instruction can then be used in conjunction with this instruction to form
common high level language FOR loops of any range.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPI1 Rwn, #data4 80 #n 2

CMPI1 Rwn, #data16 86 Fn ## ## 4

CMPI1 Rwn, mem 82 Fn MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

68/124

CMPI2 Integer Compare and Increment by 2 CMPI2
Syntax CMPI2 op1, op2

Operation (op1) ⇔ (op2)
(op1) ← (op1) + 2

Data Types WORD

Description This instruction is used to enhance the performance and flexibility of loops. The
source operand specified by op1 is compared to the source operand specified
by op2 by performing a 2’s complement binary subtraction of op2 from op1.
Operand op1 may specify ONLY GPR registers. Once the subtraction has
completed, the operand op1 is incremented by two. Using the set flags, a
branch instruction can then be used in conjunction with this instruction to form
common high level language FOR loops of any range.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPI2 Rwn, #data4 90 #n 2

CMPI2 Rwn, #data16 96 Fn ## ## 4

CMPI2 Rwn, mem 92 Fn MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

69/124

CPL Integer One’s Complement CPL
Syntax CPL op1

Operation (op1) ← ¬ (op1)

Data Types WORD

Description Performs a 1’s complement of the source operand specified by op1. The result
is stored back into op1.

E Set if the value of op1 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CPL Rwn 91 n0 2

Condition Flags E Z V C N

* * 0 0 *

ST10 Programming Manual

70/124

CPLB Integer One’s Complement CPLB
Syntax CPL op1

Operation (op1) ← ¬ (op1)

Data Types BYTE

Description Performs a 1’s complement of the source operand specified by op1. The result
is stored back into op1.

E Set if the value of op1 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CPLB Rbn B1 n0 2

Condition Flags E Z V C N

* * 0 0 *

ST10 Programming Manual

71/124

DISWDT Disable Watchdog Timer DISWDT
Syntax DISWDT

Operation Disable the watchdog timer

Description This instruction disables the watchdog timer. The watchdog timer is enabled by
a reset. The DISWDT instruction allows the watchdog timer to be disabled for
applications which do not require a watchdog function. Following a reset, this
instruction can be executed at any time until either a Service Watchdog Timer
instruction (SRVWDT) or an End of Initialization instruction (EINIT) are
executed. Once one of these instructions has been executed, the DISWDT
instruction will have no effect. To insure that this instruction is not accidentally
executed, it is implemented as a protected instruction.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

DISWDT A5 5A A5 A5 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

72/124

DIV 16-by-16 Signed Division DIV
Syntax DIV op1

Operation (MDL) ← (MDL) / (op1)
(MDH) ← (MDL) mod (op1)

Data Types WORD

Description Performs a signed 16-bit by 16-bit division of the low order word stored in the
MD register by the source word operand op1. The signed quotient is then stored
in the low order word of the MD register (MDL) and the remainder is stored in the
high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be

represented in a word data type, or if the divisor (op1) was zero.

Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

DIV Rwn 4B nn 2

Condition Flags E Z V C N

0 * S 0 *

ST10 Programming Manual

73/124

DIVL 32-by-16 Signed Division DIVL
Syntax DIVL op1

Operation (MDL) ← (MD) / (op1)
(MDH) ← (MD) mod (op1)

Data Types WORD, DOUBLEWORD

Description Performs an extended signed 32-bit by 16-bit division of the two words stored in
the MD register by the source word operand op1. The signed quotient is then
stored in the low order word of the MD register (MDL) and the remainder is
stored in the high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be

represented in a word data type, or if the divisor (op1) was zero.

Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

DIVL Rwn 6B nn 2

Condition Flags E Z V C N

0 * S 0 *

ST10 Programming Manual

74/124

DIVLU 32-by-16 Unsigned Division DIVLU
Syntax DIVLU op1

Operation (MDL) ← (MD) / (op1)
(MDH) ← (MD) mod (op1)

Data Types WORD, DOUBLEWORD

Description Performs an extended unsigned 32-bit by 16-bit division of the two words stored
in the MD register by the source word operand op1. The unsigned quotient is
then stored in the low order word of the MD register (MDL) and the remainder is
stored in the high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be

represented in a word data type, or if the divisor (op1) was zero.

Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

DIVLU Rwn 7B nn 2

Condition Flags E Z V C N

0 * S 0 *

ST10 Programming Manual

75/124

DIVU 16-by-16 Unsigned Division DIVU
Syntax DIVU op1

Operation (MDL) ← (MDL) / (op1)
(MDH) ← (MDL) mod (op1)

Data Types WORD

Description Performs an unsigned 16-bit by 16-bit division of the low order word stored in the
MD register by the source word operand op1. The signed quotient is then stored
in the low order word of the MD register (MDL) and the remainder is stored in the
high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be

represented in a word data type, or if the divisor (op1) was zero.

Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

DIVU Rwn 5B nn 2

Condition Flags E Z V C N

0 * S 0 *

ST10 Programming Manual

76/124

EINIT End of Initialization EINIT
Syntax EINIT

Operation End of Initialization

Description This instruction is used to signal the end of the initialization portion of a program.
After a reset, the reset output pin RSTOUT is pulled low. It remains low until the
EINIT instruction has been executed at which time it goes high. This enables the
program to signal the external circuitry that it has successfully initialized the
microcontroller. After the EINIT instruction has been executed, execution of the
Disable Watchdog Timer instruction (DISWDT) has no effect. To insure that this
instruction is not accidentally executed, it is implemented as a protected
instruction.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EINIT B5 4A B5 B5 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

77/124

EXTR Begin EXTended Register Sequence EXTR
Syntax EXTR op1

Operation (count) ← (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
Next Instruction
(count) ← (count) - 1

END WHILE
(count) = 0
SFR_range = Standard
Enable interrupts and traps

Description Causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’ addressing
modes being made to the Extended SFR space for a specified number of
instructions. During their execution, both standard and PEC interrupts and class
A hardware traps are locked.
The value of op1 defines the length of the effected instruction sequence.

Note The EXTR instruction must be used carefully (see introductory note).
The EXTR instruction is not available in the ST10X166 devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTR #data2 D1 :10##-0 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

78/124

EXTP Begin EXTended Page Sequence EXTP
Syntax EXTP op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
Next Instruction
(count) ← (count) - 1

END WHILE
(count) = 0
Data_Page = (DPPx)
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long and indirect
addressing modes for a specified number of instructions. During their execution,
both standard and PEC interrupts and class A hardware traps are locked. The
EXTP instruction becomes immediately active such that no additional NOPs are
required.
For any long (’mem’) or indirect ([...]) address in the EXTP instruction sequence,
the 10-bit page number (address bits A23-A14) is not determined by the
contents of a DPP register but by the value of op1 itself. The 14-bit page offset
(address bits A13-A0) is derived from the long or indirect address as usual.
The value of op2 defines the length of the effected instruction sequence.

Note The EXTP instruction must be used carefully (see introductory note).
The EXTP instruction is not available in the ST10X166 devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTP Rwm, #data2 DC :01##-m 2

EXTP #pag, #data2 D7 :01##-0 pp 0:00pp 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

79/124

EXTPR Begin EXTended Page and Register Sequence EXTPR
Syntax EXTPR op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page = (op1) AND SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
Next Instruction
(count) ← (count) - 1

END WHILE
(count) = 0
Data_Page = (DPPx) AND SFR_range = Standard
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long and indirect
addressing modes and causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’
or ’bitaddr’ addressing modes being made to the Extended SFR space for a
specified number of instructions. During their execution, both standard and PEC
interrupts and class A hardware traps are locked.
For any long (’mem’) or indirect ([...]) address in the EXTP instruction sequence,
the 10-bit page number (address bits A23-A14) is not determined by the
contents of a DPP register but by the value of op1 itself. The 14-bit page offset
(address bits A13-A0) is derived from the long or indirect address as usual.
The value of op2 defines the length of the effected instruction sequence.

Note The EXTPR instruction must be used carefully (see introductory note).
The EXTPR instruction is not available in the ST10X166 devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTPR Rwm, #data2 DC :11##-m 2

EXTPR #pag, #data2 D7 :11##-0 pp 0:00pp 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

80/124

EXTS Begin EXTended Segment Sequence EXTS
Syntax EXTS op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
Next Instruction
(count) ← (count) - 1

END WHILE
(count) = 0
Data_Page = (DPPx)
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long and indirect
addressing modes for a specified number of instructions. During their execution,
both standard and PEC interrupts and class A hardware traps are locked. The
EXTS instruction becomes immediately active such that no additional NOPs are
required.
For any long (’mem’) or indirect ([...]) address in an EXTS instruction sequence,
the value of op1 determines the 8-bit segment (address bits A23-A16) valid for
the corresponding data access. The long or indirect address itself represents
the 16-bit segment offset (address bits A15-A0).
The value of op2 defines the length of the effected instruction sequence.

Note The EXTS instruction must be used carefully (see introductory note).
The EXTS instruction is not available in the ST10X166 devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTS Rwm, #data2 DC :00##-m 2

EXTS #seg, #data2 D7 :00##-0 ss 00 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

81/124

EXTSR Begin EXTended Segment and Register Sequence EXTSR
Syntax EXTSR op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment = (op1) AND SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
Next Instruction
(count) ← (count) - 1

END WHILE
(count) = 0
Data_Page = (DPPx) AND SFR_range = Standard
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long and indirect
addressing modes and causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’
or ’bitaddr’ addressing modes being made to the Extended SFR space for a
specified number of instructions. During their execution, both standard and PEC
interrupts and class A hardware traps are locked. The EXTSR instruction
becomes immediately active such that no additional NOPs are required.
For any long (’mem’) or indirect ([...]) address in an EXTSR instruction
sequence, the value of op1 determines the 8-bit segment (address bits A23-
A16) valid for the corresponding data access. The long or indirect address itself
represents the 16-bit segment offset (address bits A15-A0).
The value of op2 defines the length of the effected instruction sequence.

Note The EXTSR instruction must be used carefully (see introductory note).
The EXTSR instruction is not available in the ST10X166 devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTSR Rwm, #data2 DC :10##-m 2

EXTSR #seg, #data2 D7 :10##-0 ss 00 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

82/124

IDLE Enter Idle Mode IDLE
Syntax IDLE

Operation Enter Idle Mode

Description This instruction causes the part to enter the idle mode. In this mode, the CPU is
powered down while the peripherals remain running. It remains powered down
until a peripheral interrupt or external interrupt occurs. To insure that this
instruction is not accidentally executed, it is implemented as a protected
instruction.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

IDLE 87 78 87 87 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

83/124

JB Relative Jump if Bit Set JB
Syntax JB op1, op2

Operation IF (op1) = 1 THEN
(IP) ← (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Data Types BIT

Description If the bit specified by op1 is set, program execution continues at the location of
the instruction pointer, IP, plus the specified displacement, op2. The
displacement is a two’s complement number which is sign extended and counts
the relative distance in words. The value of the IP used in the target address
calculation is the address of the instruction following the JB instruction. If the
specified bit is clear, the instruction following the JB instruction is executed.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JB bitaddrQ.q, rel 8A QQ rr q0 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

84/124

JBC Relative Jump if Bit Set and Clear Bit JBC
Syntax JBC op1, op2

Operation IF (op1) = 1 THEN
(op1) = 0
(IP) ← (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Data Types BIT

Description If the bit specified by op1 is set, program execution continues at the location of
the instruction pointer, IP, plus the specified displacement, op2. The bit
specified by op1 is cleared, allowing implementation of semaphore operations.
The displacement is a two’s complement number which is sign extended and
counts the relative distance in words. The value of the IP used in the target
address calculation is the address of the instruction following the JBC
instruction. If the specified bit was clear, the instruction following the JBC
instruction is executed.

E Not affected.

Z Contains logical negation of the previous state of the specified bit.

V Not affected.

C Not affected.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes

JBC bitaddrQ.q, rel AA QQ rr q0 4

Condition Flags E Z V C N

- B - - B

ST10 Programming Manual

85/124

JMPA Absolute Conditional Jump JMPA
Syntax JMPA op1, op2

Operation IF (op1) = 1 THEN
(IP) ← op2

ELSE
Next Instruction

END IF

Description If the condition specified by op1 is met, a branch to the absolute address
specified by op2 is taken. If the condition is not met, no action is taken, and the
instruction following the JMPA instruction is executed normally.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPA cc, caddr EA c0 MM MM 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

86/124

JMPI Indirect Conditional Jump JMPI
Syntax JMPI op1, op2

Operation IF (op1) = 1 THEN
(IP) ← (op2)

ELSE
Next Instruction

END IF

Description If the condition specified by op1 is met, a branch to the absolute address
specified by op2 is taken. If the condition is not met, no action is taken, and the
instruction following the JMPI instruction is executed normally.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPI cc, [Rwn] 9C cn 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

87/124

JMPR Relative Conditional Jump JMPR
Syntax JMPR op1, op2

Operation IF (op1) = 1 THEN
(IP) ← (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Description If the condition specified by op1 is met, program execution continues at the
location of the instruction pointer, IP, plus the specified displacement, op2. The
displacement is a two’s complement number which is sign extended and counts
the relative distance in words. The value of the IP used in the target address
calculation is the address of the instruction following the JMPR instruction. If the
specified condition is not met, program execution continues normally with the
instruction following the JMPR instruction.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPR cc, rel cD rr 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

88/124

JMPS Absolute Inter-Segment Jump JMPS
Syntax JMPS op1, op2

Operation (CSP) ← op1
(IP) ← op2

Description Branches unconditionally to the absolute address specified by op2 within the
segment specified by op1.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPS seg, caddr FA ss MM MM 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

89/124

JNB Relative Jump if Bit Clear JNB
Syntax JNB op1, op2

Operation IF (op1) = 0 THEN
(IP) ← (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Data Types BIT

Description If the bit specified by op1 is clear, program execution continues at the location
of the instruction pointer, IP, plus the specified displacement, op2. The
displacement is a two’s complement number which is sign extended and counts
the relative distance in words. The value of the IP used in the target address
calculation is the address of the instruction following the JNB instruction. If the
specified bit is set, the instruction following the JNB instruction is executed.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JNB bitaddrQ.q, rel 9A QQ rr q0 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

90/124

JNBS Relative Jump if Bit Clear and Set Bit JNBS
Syntax JNBS op1, op2

Operation IF (op1) = 0 THEN
(op1) = 1
(IP) ← (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Data Types BIT

Description If the bit specified by op1 is clear, program execution continues at the location
of the instruction pointer, IP, plus the specified displacement, op2. The bit
specified by op1 is set, allowing implementation of semaphore operations. The
displacement is a two’s complement number which is sign extended and counts
the relative distance in words. The value of the IP used in the target address
calculation is the address of the instruction following the JNBS instruction. If the
specified bit was set, the instruction following the JNBS instruction is executed.

E Not affected.

Z Contains logical negation of the previous state of the specified bit.

V Not affected.

C Not affected.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes

JNBS bitaddrQ.q, rel BA QQ rr q0 4

Condition Flags E Z V C N

- B - - B

ST10 Programming Manual

91/124

MOV Move Data MOV
Syntax MOV op1, op2

Operation (op1) ← (op2)

Data Types WORD

Description Moves the contents of the source operand specified by op2 to the location
specified by the destination operand op1. The contents of the moved data is
examined, and the condition codes are updated accordingly.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Addressing Modes Mnemonic Format Bytes

MOV Rwn, Rwm F0 nm 2

MOV Rwn, #data4 E0 #n 2

MOV reg, #data16 E6 RR ## ## 4

MOV Rwn, [Rwm] A8 nm 2

MOV Rwn, [Rwm+] 98 nm 2

MOV [Rwm], Rwn B8 nm 2

MOV [-Rwm], Rwn 88 nm 2

MOV [Rwn], [Rwm] C8 nm 2

MOV [Rwn+], [Rwm] D8 nm 2

MOV [Rwn], [Rwm+] E8 nm 2

MOV Rwn, [Rwm+#data16] D4 nm ## ## 4

MOV [Rwm+#data16], Rwn C4 nm ## ## 4

MOV [Rwn], mem 84 0n MM MM 4

MOV mem, [Rwn] 94 0n MM MM 4

MOV reg, mem F2 RR MM MM 4

MOV mem, reg F6 RR MM MM 4

Condition Flags E Z V C N

* * - - *

ST10 Programming Manual

92/124

MOVB Move Data MOVB
Syntax MOVB op1, op2

Operation (op1) ← (op2)

Data Types BYTE

Description Moves the contents of the source operand specified by op2 to the location
specified by the destination operand op1. The contents of the moved data is
examined, and the condition codes are updated accordingly.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Addressing Modes Mnemonic Format Bytes

MOVB Rbn, Rbm F1 nm 2

MOVB Rbn, #data4 E1 #n 2

MOVB reg, #data16 E7 RR ## ## 4

MOVB Rbn, [Rwm] A9 nm 2

MOVB Rbn, [Rwm+] 99 nm 2

MOVB [Rwm], Rbn B9 nm 2

MOVB [-Rwm], Rbn 89 nm 2

MOVB [Rwn], [Rwm] C9 nm 2

MOVB [Rwn+], [Rwm] D9 nm 2

MOVB [Rwn], [Rwm+] E9 nm 2

MOVB Rbn, [Rwm+#data16] F4 nm ## ## 4

MOVB [Rwm+#data16], Rbn E4 nm ## ## 4

MOVB [Rwn], mem A4 0n MM MM 4

MOVB mem, [Rwn] B4 0n MM MM 4

MOVB reg, mem F3 RR MM MM 4

MOVB mem, reg F7 RR MM MM 4

Condition Flags E Z V C N

* * - - *

ST10 Programming Manual

93/124

MOVBS Move Byte Sign Extend MOVBS
Syntax MOVBS op1, op2

Operation (low byte op1) ← (op2)
IF (op27) = 1 THEN
(high byte op1) ← FFH

ELSE
(high byte op1) ← 00H

END IF

Data Types WORD, BYTE

Description Moves and sign extends the contents of the source byte specified by op2 to the
word location specified by the destination operand op1. The contents of the
moved data is examined, and the condition codes are updated accordingly.

E Always cleared.

Z Set if the value of the source operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Addressing Modes Mnemonic Format Bytes

MOVBS Rwn, Rbm D0 mn 2

MOVBS reg, mem D2 RR MM MM 4

MOVBS mem, reg D5 RR MM MM 4

Condition Flags E Z V C N

0 * - - *

ST10 Programming Manual

94/124

MOVBZ Move Byte Zero Extend MOVBZ
Syntax MOVBZ op1, op2

Operation (low byte op1) ← (op2)
(high byte op1) ← 00H

Data Types WORD, BYTE

Description Moves and zero extends the contents of the source byte specified by op2 to the
word location specified by the destination operand op1. The contents of the
moved data is examined, and the condition codes are updated accordingly.

E Always cleared.

Z Set if the value of the source operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Always cleared.

Addressing Modes Mnemonic Format Bytes

MOVBZ Rwn, Rbm C0 mn 2

MOVBZ reg, mem C2 RR MM MM 4

MOVBZ mem, reg C5 RR MM MM 4

Condition Flags E Z V C N

0 * - - 0

ST10 Programming Manual

95/124

MUL Signed Multiplication MUL
Syntax MUL op1, op2

Operation (MD) ← (op1) * (op2)

Data Types WORD

Description Performs a 16-bit by 16-bit signed multiplication using the two words specified
by operands op1 and op2 respectively. The signed 32-bit result is placed in the
MD register.

E Always cleared.

Z Set if the result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a word data type.

Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

MUL Rwn, Rwm 0B nm 2

Condition Flags E Z V C N

0 * S 0 0

ST10 Programming Manual

96/124

MULU Unsigned Multiplication MULU
Syntax MULU op1, op2

Operation (MD) ← (op1) * (op2)

Data Types WORD

Description Performs a 16-bit by 16-bit unsigned multiplication using the two words
specified by operands op1 and op2 respectively. The unsigned 32-bit result is
placed in the MD register.

E Always cleared.

Z Set if the result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a word data type.

Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

MULU Rwn, Rwm 1foB nm 2

Condition Flags E Z V C N

0 * S 0 0

ST10 Programming Manual

97/124

NEG Integer Two’s Complement NEG
Syntax NEG op1

Operation (op1) ← 0 - (op1)

Data Types WORD

Description Performs a binary 2’s complement of the source operand specified by op1. The
result is then stored in op1.

E Set if the value of op1 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

NEG Rwn 81 n0 2

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

98/124

NEGB Integer Two’s Complement NEGB
Syntax NEGB op1

Operation (op1) ← 0 - (op1)

Data Types BYTE

Description Performs a binary 2’s complement of the source operand specified by op1. The
result is then stored in op1.

E Set if the value of op1 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

NEGB Rbn A1 n0 2

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

99/124

NOP No Operation NOP
Syntax NOP

Operation No Operation

Description This instruction causes a null operation to be performed. A null operation
causes no change in the status of the flags.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

NOP CC 00 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

100/124

OR Logical OR OR
Syntax OR op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types WORD

Description Performs a bitwise logical OR of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

OR Rwn, Rwm 70 nm 2

OR Rwn, [Rwi] 78 n:10ii 2

OR Rwn, [Rwi+] 78 n:11ii 2

OR Rwn, #data3 78 n:0### 2

OR reg, #data16 76 RR ## ## 4

OR reg, mem 72 RR MM MM 4

OR mem, reg 74 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *

ST10 Programming Manual

101/124

ORB Logical OR ORB
Syntax ORB op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types BYTE

Description Performs a bitwise logical OR of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ORB Rbn, Rbm 71 nm 2

ORB Rbn, [Rwi] 79 n:10ii 2

ORB Rbn, [Rwi+] 79 n:11ii 2

ORB Rbn, #data3 79 n:0### 2

ORB reg, #data16 77 RR ## ## 4

ORB reg, mem 73 RR MM MM 4

ORB mem, reg 75 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *

ST10 Programming Manual

102/124

PCALL Push Word and Call Subroutine Absolute PCALL
Syntax PCALL op1, op2

Operation (tmp) ← (op1)
(SP) ← (SP) - 2
((SP)) ← (tmp)
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← op2

Data Types WORD

Description Pushes the word specified by operand op1 and the value of the instruction
pointer, IP, onto the system stack, and branches to the absolute memory
location specified by the second operand op2. Because IP always points to the
instruction following the branch instruction, the value stored on the system stack
represents the return address of the calling routine.

E Set if the value of the pushed operand op1 represents the lowest

possible negative number. Cleared otherwise. Used to signal the end

of a table.

Z Set if the value of the pushed operand op1 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed operand op1 is set. Cleared

otherwise.

Addressing Modes Mnemonic Format Bytes

PCALL reg, caddr E2 RR MM MM 4

Condition Flags E Z V C N

* * - - *

ST10 Programming Manual

103/124

POP Pop Word from System Stack POP
Syntax POP op1

Operation (tmp) ← ((SP))
(SP) ← (SP) + 2
(op1) ← (tmp)

Data Types WORD

Description Pops one word from the system stack specified by the Stack Pointer into the
operand specified by op1. The Stack Pointer is then incremented by two.

E Set if the value of the popped word represents the lowest possible

negative number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the popped word equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the popped word is set. Cleared

otherwise.

Addressing Modes Mnemonic Format Bytes

POP reg FC RR 2

Condition Flags E Z V C N

* * - - *

ST10 Programming Manual

104/124

PRIOR Prioritize Register PRIOR
Syntax PRIOR op1, op2

Operation (tmp) ← (op2)
(count) ← 0
DO WHILE (tmp15) ≠ 1 AND (count) ≠ 15 AND (op2) ≠ 0
(tmpn) ← (tmpn-1)
(count) ← (count) - 1

END WHILE
(op1) ← (count)

Data Types WORD

Description This instruction stores a count value in the word operand specified by op1
indicating the number of single bit shifts required to normalize the operand op2
so that its MSB is equal to one. If the source operand op2 equals zero, a zero is
written to operand op1 and the zero flag is set. Otherwise the zero flag is
cleared.

E Always cleared.

Z Set if the source operand op2 equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Always cleared.

Addressing Modes Mnemonic Format Bytes

PRIOR Rwn, Rwm 2B nm 2

Condition Flags E Z V C N

0 * 0 0 0

ST10 Programming Manual

105/124

PUSH Push Word on System Stack PUSH
Syntax PUSH op1

Operation (tmp) ← (op1)
(SP) ← (SP) - 2
((SP)) ← (tmp)

Data Types WORD

Description Moves the word specified by operand op1 to the location in the internal system
stack specified by the Stack Pointer, after the Stack Pointer has been
decremented by two.

E Set if the value of the pushed word represents the lowest possible

negative number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the pushed word equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed word is set. Cleared

otherwise.

Addressing Modes Mnemonic Format Bytes

PUSH reg EC RR 2

Condition Flags E Z V C N

* * - - *

ST10 Programming Manual

106/124

PWRDN Enter Power Down Mode PWRDN
Syntax PWRDN

Operation Enter Power Down Mode

Description This instruction causes the part to enter the power down mode. In this mode, all
peripherals and the CPU are powered down until the part is externally reset. To
insure that this instruction is not accidentally executed, it is implemented as a
protected instruction. To further control the action of this instruction, the
PWRDN instruction is only enabled when the non-maskable interrupt pin (NMI)
is in the low state. Otherwise, this instruction has no effect.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

PWRDN 97 68 97 97 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

107/124

RET Return from Subroutine RET
Syntax RET

Operation (IP) ← ((SP))
(SP) ← (SP) + 2

Description Returns from a subroutine. The IP is popped from the system stack. Execution
resumes at the instruction following the CALL instruction in the calling routine.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

RET CB 00 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

108/124

RETI Return from Interrupt Routine RETI
Syntax RETI

Operation (IP) ← ((SP))
(SP) ← (SP) + 2
IF (SYSCON.SGTDIS=0) THEN
(CSP) ← ((SP))
(SP) ← (SP) + 2

END IF
(PSW) ← ((SP))
(SP) ← (SP) + 2

Description Returns from an interrupt routine. The PSW, IP, and CSP are popped off the
system stack. Execution resumes at the instruction which had been interrupted.
The previous system state is restored after the PSW has been popped. The
CSP is only popped if segmentation is enabled. This is indicated by the SGTDIS
bit in the SYSCON register.

E Restored from the PSW popped from stack.

Z Restored from the PSW popped from stack.

V Restored from the PSW popped from stack.

C Restored from the PSW popped from stack.

N Restored from the PSW popped from stack.

Addressing Modes Mnemonic Format Bytes

RETI FB 88 2

Condition Flags E Z V C N

S S S S S

ST10 Programming Manual

109/124

RETP Return from Subroutine and Pop Word RETP
Syntax RETP op1

Operation (IP) ← ((SP))
(SP) ← (SP) + 2
(tmp) ← ((SP))
(SP) ← (SP) + 2
(op1) ← (tmp)

Data Types WORD

Description Returns from a subroutine. The IP is first popped from the system stack and
then the next word is popped from the system stack into the operand specified
by op1. Execution resumes at the instruction following the CALL instruction in
the calling routine.

E Set if the value of the word popped into operand op1 represents the

lowest possible negative number. Cleared otherwise. Used to signal

the end of a table.

Z Set if the value of the word popped into operand op1 equals zero.

Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the word popped into operand op1 is

set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

RETP reg EB RR 2

Condition Flags E Z V C N

* * - - *

ST10 Programming Manual

110/124

RETS Return from Inter-Segment Subroutine RETS
Syntax RETS

Operation (IP) ← ((SP))
(SP) ← (SP) + 2
(CSP) ← ((SP))
(SP) ← (SP) + 2

Description Returns from an inter-segment subroutine. The IP and CSP are popped from
the system stack. Execution resumes at the instruction following the CALLS
instruction in the calling routine.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

RETS DB 00 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

111/124

ROL Rotate Left ROL
Syntax ROL op1, op2

Operation (count) ← (op2)
(C) ← 0
DO WHILE (count) ≠ 0
(C) ← (op115)
(op1n) ← (op1n-1) [n=1...15]
(op10) ← (C)
(count) ← (count) - 1

END WHILE

Data Types WORD

Description Rotates the destination word operand op1 left by as many times as specified by
the source operand op2. Bit 15 is rotated into Bit 0 and into the Carry. Only shift
values between 0 and 15 are allowed. When using a GPR as the count control,
only the least significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last MSB shifted out of op1.

Cleared for a rotate count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ROL Rwn, Rwm 0C nm 2

ROL Rwn, #data4 1C #n 2

Condition Flags E Z V C N

0 * 0 S *

ST10 Programming Manual

112/124

ROR Rotate Right ROR
Syntax ROR op1, op2

Operation (count) ← (op2)
(C) ← 0
(V) ← 0
DO WHILE (count) ≠ 0
(V) ← (V) ∨ (C)
(C) ← (op10)
(op1n) ← (op1n+1) [n=0...14]
(op115) ← (C)
(count) ← (count) - 1

END WHILE

Data Types WORD

Description Rotates the destination word operand op1 right by as many times as specified
by the source operand op2. Bit 0 is rotated into Bit 15 and into the Carry. Only
shift values between 0 and 15 are allowed. When using a GPR as the count
control, only the least significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the rotate operation a ‘1’ is shifted out of the carry

flag. Cleared for a rotate count of zero.

C The carry flag is set according to the last LSB shifted out of op1.

Cleared for a rotate count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ROR Rwn, Rwm 2C nm 2

ROR Rwn, #data4 3C #n 2

Condition Flags E Z V C N

0 * S S *

ST10 Programming Manual

113/124

SCXT Switch Context SCXT
Syntax SCXT op1, op2

Operation (tmp1) ← (op1)
(tmp2) ← (op2)
(SP) ← (SP) - 2
((SP)) ← (tmp1)
(op1) ← (tmp2)

Description Used to switch contexts for any register. Switching context is a push and load
operation. The contents of the register specified by the first operand, op1, are
pushed onto the stack. That register is then loaded with the value specified by
the second operand, op2.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

SCXT reg, #data16 C6 RR ## ## 4

SCXT reg, mem D6 RR MM MM 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

114/124

SHL Shift Left SHL
Syntax SHL op1, op2

Operation (count) ← (op2)
(C) ← 0
DO WHILE (count) ≠ 0
(C) ← (op115)
(op1n) ← (op1n-1) [n=1...15]
(op10) ← 0
(count) ← (count) - 1

END WHILE

Data Types WORD

Description Shifts the destination word operand op1 left by as many times as specified by
the source operand op2. The least significant bits of the result are filled with
zeros accordingly. The MSB is shifted into the Carry. Only shift values between
0 and 15 are allowed. When using a GPR as the count control, only the least
significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last MSB shifted out of op1.

Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SHL Rwn, Rwm 4C nm 2

SHL Rwn, #data4 5C #n 2

Condition Flags E Z V C N

0 * 0 S *

ST10 Programming Manual

115/124

SHR Shift Right SHR
Syntax SHR op1, op2

Operation (count) ← (op2)
(C) ← 0
(V) ← 0
DO WHILE (count) ≠ 0
(V) ← (C) ∨ (V)
(C) ← (op10)
(op1n) ← (op1n+1) [n=0...14]
(op115) ← 0
(count) ← (count) - 1

END WHILE

Data Types WORD

Description Shifts the destination word operand op1 right by as many times as specified by
the source operand op2. The most significant bits of the result are filled with
zeros accordingly. Since the bits shifted out effectively represent the remainder,
the Overflow flag is used instead as a Rounding flag. This flag together with the
Carry flag helps the user to determine whether the remainder bits lost were
greater than, less than or equal to one half an LSB. Only shift values between 0
and 15 are allowed. When using a GPR as the count control, only the least
significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a ‘1’ is shifted out of the carry

flag. Cleared for a shift count of zero.

C The carry flag is set according to the last LSB shifted out of op1.

Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SHR Rwn, Rwm 6C nm 2

SHR Rwn, #data4 7C #n 2

Condition Flags E Z V C N

0 * S S *

ST10 Programming Manual

116/124

SRST Software Reset SRST
Syntax SRST

Operation Software Reset

Description This instruction is used to perform a software reset. A software reset has the
same effect on the microcontroller as an externally applied hardware reset. To
insure that this instruction is not accidentally executed, it is implemented as a
protected instruction.

E Always cleared.

Z Always cleared.

V Always cleared.

C Always cleared.

N Always cleared.

Addressing Modes Mnemonic Format Bytes

SRST B7 48 B7 B7 4

Condition Flags E Z V C N

0 0 0 0 0

ST10 Programming Manual

117/124

SRVWDT Service Watchdog Timer SRVWDT
Syntax SRVWDT

Operation Service Watchdog Timer

Description This instruction services the Watchdog Timer. It reloads the high order byte of
the Watchdog Timer with a preset value and clears the low byte on every
occurrence. Once this instruction has been executed, the watchdog timer
cannot be disabled. To insure that this instruction is not accidentally executed,
it is implemented as a protected instruction.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

SRVWDT A7 58 A7 A7 4

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

118/124

SUB Integer Subtraction SUB
Syntax SUB op1, op2

Operation (op1) ← (op1) - (op2)

Data Types WORD

Description Performs a 2’s complement binary subtraction of the source operand specified
by op2 from the destination operand specified by op1. The result is then stored
in op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SUB Rwn, Rwm 20 nm 2

SUB Rwn, [Rwi] 28 n:10ii 2

SUB Rwn, [Rwi+] 28 n:11ii 2

SUB Rwn, #data3 28 n:0### 2

SUB reg, #data16 26 RR ## ## 4

SUB reg, mem 22 RR MM MM 4

SUB mem, reg 24 RR MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

119/124

SUBB Integer Subtraction SUBB
Syntax SUBB op1, op2

Operation (op1) ← (op1) - (op2)

Data Types BYTE

Description Performs a 2’s complement binary subtraction of the source operand specified
by op2 from the destination operand specified by op1. The result is then stored
in op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SUBB Rbn, Rbm 21 nm 2

SUBB Rbn, [Rwi] 29 n:10ii 2

SUBB Rbn, [Rwi+] 29 n:11ii 2

SUBB Rbn, #data3 29 n:0### 2

SUBB reg, #data16 27 RR ## ## 4

SUBB reg, mem 23 RR MM MM 4

SUBB mem, reg 25 RR MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

120/124

SUBC Integer Subtraction with Carry SUBC
Syntax SUBC op1, op2

Operation (op1) ← (op1) - (op2) - (C)

Data Types WORD

Description Performs a 2’s complement binary subtraction of the source operand specified
by op2 and the previously generated carry bit from the destination operand
specified by op1. The result is then stored in op1. This instruction can be used
to perform multiple precision arithmetic.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and the previous Z flag was set. Cleared

otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SUBC Rwn, Rwm 30 nm 2

SUBC Rwn, [Rwi] 38 n:10ii 2

SUBC Rwn, [Rwi+] 38 n:11ii 2

SUBC Rwn, #data3 38 n:0### 2

SUBC reg, #data16 36 RR ## ## 4

SUBC reg, mem 32 RR MM MM 4

SUBC mem, reg 34 RR MM MM 4

Condition Flags E Z V C N

* S * S *

ST10 Programming Manual

121/124

SUBCB Integer Subtraction with Carry SUBCB
Syntax SUBCB op1, op2

Operation (op1) ← (op1) - (op2) - (C)

Data Types BYTE

Description Performs a 2’s complement binary subtraction of the source operand specified
by op2 and the previously generated carry bit from the destination operand
specified by op1. The result is then stored in op1. This instruction can be used
to perform multiple precision arithmetic.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be

represented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SUBCB Rbn, Rbm 31 nm 2

SUBCB Rbn, [Rwi] 39 n:10ii 2

SUBCB Rbn, [Rwi+] 39 n:11ii 2

SUBCB Rbn, #data3 39 n:0### 2

SUBCB reg, #data16 37 RR ## ## 4

SUBCB reg, mem 33 RR MM MM 4

SUBCB mem, reg 35 RR MM MM 4

Condition Flags E Z V C N

* * * S *

ST10 Programming Manual

122/124

TRAP Software Trap TRAP
Syntax TRAP op1

Operation (SP) ← (SP) - 2
((SP)) ← (PSW)
IF (SYSCON.SGTDIS=0) THEN
(SP) ← (SP) - 2
((SP)) ← (CSP)
(CSP) ← 0

END IF
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← zero_extend (op1*4)

Description Invokes a trap or interrupt routine based on the specified operand, op1. The
invoked routine is determined by branching to the specified vector table entry
point. This routine has no indication of whether it was called by software or
hardware. System state is preserved identically to hardware interrupt entry
except that the CPU priority level is not affected. The RETI, return from interrupt,
instruction is used to resume execution after the trap or interrupt routine has
completed. The CSP is pushed if segmentation is enabled. This is indicated by
the SGTDIS bit in the SYSCON register.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

TRAP #trap7 9B t:ttt0 2

Condition Flags E Z V C N

- - - - -

ST10 Programming Manual

123/124

XOR Logical Exclusive OR XOR
Syntax XOR op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types WORD

Description Performs a bitwise logical EXCLUSIVE OR of the source operand specified by
op2 and the destination operand specified by op1. The result is then stored in
op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

XOR Rwn, Rwm 50 nm 2

XOR Rwn, [Rwi] 58 n:10ii 2

XOR Rwn, [Rwi+] 58 n:11ii 2

XOR Rwn, #data3 58 n:0### 2

XOR reg, #data16 56 RR ## ## 4

XOR reg, mem 52 RR MM MM 4

XOR mem, reg 54 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *

ST10 Programming Manual

124/124

XORB Logical Exclusive OR XORB
Syntax XORB op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types BYTE

Description Performs a bitwise logical EXCLUSIVE OR of the source operand specified by
op2 and the destination operand specified by op1. The result is then stored in
op1.

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

XORB Rbn, Rbm 51 nm 2

XORB Rbn, [Rwi] 59 n:10ii 2

XORB Rbn, [Rwi+] 59 n:11ii 2

XORB Rbn, #data3 59 n:0### 2

XORB reg, #data16 57 RR ## ## 4

XORB reg, mem 53 RR MM MM 4

XORB mem, reg 55 RR MM MM 4

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all informa-
tion previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support
devices or systems without the express written approval of SGS-THOMSON Microelectronics.

 1995 SGS-THOMSON Microelectronics - All rights reserved.
Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I2C Patent. Rights to use
these components in an I C system is granted provided that the system conforms to the I2C Standard Specification as defined by

Philips.
SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - China - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

Condition Flags E Z V C N

* * 0 0 *

